Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(13): 1186-1193, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38538564

RESUMEN

Melanoma, renowned for its aggressive behavior and resistance to conventional treatments, stands as a formidable challenge in the oncology landscape. The dynamic and complex interplay between cancer cells and the tumor microenvironment has gained significant attention, revealing Melanoma-Associated Fibroblasts (MAFs) as central players in disease progression. The heterogeneity of MAFs endows them with a dual role in melanoma. This exhaustive review seeks to not only shed light on the multifaceted roles of MAFs in orchestrating tumor-promoting inflammation but also to explore their involvement in antitumor immunity. By unraveling novel mechanisms underlying MAF functions, this review aims to provide a comprehensive understanding of their impact on melanoma development. Additionally, it delves into the potential of leveraging MAFs for innovative immunotherapeutic strategies, offering new avenues for enhancing treatment outcomes in the challenging realm of melanoma therapeutics.


Asunto(s)
Fibroblastos Asociados al Cáncer , Inmunoterapia , Melanoma , Microambiente Tumoral , Humanos , Melanoma/inmunología , Melanoma/terapia , Melanoma/patología , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/metabolismo , Animales , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Inflamación/inmunología , Fibroblastos/inmunología , Fibroblastos/metabolismo
2.
Mol Cell Biochem ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472681

RESUMEN

Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PTR and MDA-MB-231R were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231R cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.

3.
Eur J Clin Pharmacol ; 80(4): 563-573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267688

RESUMEN

OBJECTIVES: We aimed to evaluate the relationship between use of sodium-glucose cotransporter-2 inhibitors (SGLT2is) and incidence of various respiratory and infectious diseases and site-specific fractures. METHODS: Large randomized controlled trials (RCTs) of SGLT2is enrolling more than 400 subjects were included. Outcomes of interest were various serious adverse events regarding to respiratory and infectious disorders and site-specific fractures. Meta-analysis was done using risk ratio (RR) and 95% confidence interval (CI) as effect size. RESULTS: Thirty-two large RCTs were included in this meta-analysis. Use of SGLT2is was significantly associated with the lower incidences of 6 kinds of noninfectious respiratory diseases {e.g., Asthma (RR 0.64, 95% CI 0.43-0.96; P = 0.0299), Chronic obstructive pulmonary disease [COPD] (RR 0.75, 95% CI 0.62-0.91; P = 0.0027), and Respiratory failure (RR 0.78, 95% CI 0.61-0.99; P = 0.0447)} and 4 kinds of infectious respiratory diseases {e.g., Bronchitis (RR 0.61, 95% CI 0.46-0.81; P = 0.0007), and Pneumonia (RR 0.85, 95% CI 0.78-0.93; P = 0.0002)}. Use of SGLT2is was not significantly associated with the incidences of 31 kinds of site-specific fractures (e.g., Hip fracture, Femoral neck fracture, and Spinal fracture; P > 0.05). CONCLUSIONS: Our meta-analysis confirmed the benefits of SGLT2is against 6 kinds of noninfectious respiratory diseases (e.g., Asthma, COPD, and Respiratory failure) and 4 kinds of infectious respiratory diseases (e.g., Bronchitis, and Pneumonia). These findings suggest a likelihood that SGLT2is might be used to prevent or treat these respiratory diseases. Moreover, our meta-analysis for the first time revealed no association between use of SGLT2is and incidence of various site-specific fractures.


Asunto(s)
Asma , Bronquitis , Enfermedades Transmisibles , Fracturas de Cadera , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Humanos , Incidencia , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Acta Pharmacol Sin ; 45(7): 1349-1365, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38504011

RESUMEN

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.


Asunto(s)
Infarto de la Arteria Cerebral Media , Inflamasomas , Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estimulación del Nervio Vago/métodos , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , Ratones , Inflamasomas/metabolismo , Masculino , Infarto de la Arteria Cerebral Media/terapia , Neuroprotección , Ratones Noqueados
5.
Clin Lab ; 70(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469779

RESUMEN

BACKGROUND: Rh(D) phenotype in a sample from a 19-year-old female patient showed weak positivity (1+). A follow-up sample was requested to further define the Rh(D) phenotype, her Rh(D) phenotype was tested by using another reagent, Rh(D) phenotype still showed weak reactivity (1+), RhCcEe phenotype was Ccee. METHODS: Seven samples from the family members of the proposita were received. The RhDCcEe phenotypes were typed by the microcolumn gel card and the unexpected antibodies were assayed by indirect anti-human globulin test (IAT). Genomic DNA was extracted from the blood sample and the novel RHD1058G>C allele was detected through an established sequence-specific primer PCR (PCR-SSP), RHD exons 1 - 10 were sequenced afterward by exon-specific amplification. The distribution of RHD1058G>C allele and RHD weak positive phenotype were investigated in the pedigrees. RESULTS: The unexpected antibodies all were negative in the family members. The novel RHD1058G>C allele was found in the proposita, her father, and grandfather. Five family members were detected serologically with the common Rh(D)-positive phenotypes either as homozygote of RHD/RHD or heterozygote of RHD/RHd. Two family members were detected as weak D phenotypes in accordance with the genotyping results by PCR-SSP, and both of them have a D1058Ce haplotype and a dce haplotype. One member, her father, was tested common Rh(D)-positive with D1058Ce haplotype and a Dce haplotype. CONCLUSIONS: These data allow us to describe the characteristics of the weak D phenotype with a novel c.RHD-1058G>C allele, which may be partial D and increase the risk of RHD alloantibody. The novel RHD1058G>C allele was inherited in three generations in a family rather than spontaneous mutation in an individual.


Asunto(s)
Pueblo Asiatico , Antígenos de Grupos Sanguíneos , Adulto , Femenino , Humanos , Adulto Joven , Alelos , Pueblo Asiatico/genética , China , Genotipo , Fenotipo , Sistema del Grupo Sanguíneo Rh-Hr/genética
6.
Toxicol Mech Methods ; 34(6): 694-702, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572673

RESUMEN

The protective effect of isoflurane on cardiomyocyte ischemia/reperfusion injury (I/RI) was explored in hypoxia and reoxygenation (H/R) induced cardiomyocyte injury model. In terms of mechanism, the participation of long non-coding RNA CASC15/microR-542-3p axis was further discussed. H9c2 cells received H/R treatment to mimic myocardial I/RI. RT-qPCR was performed to quantify mRNA levels. Cell viability and apoptosis were evaluated after isoflurane pretreatment and cell transfection. ELISA was performed to measure the concentrations of inflammatory/oxidative stress-related cytokines (TNF-α, IL-6, MDA, SOD). The target relationship between CASC12 and miR-542-3p was determined via dual-luciferase reporter assay. Isoflurane pretreatment alleviated H/R-induced cell viability suppression and cell apoptosis promotion, which was accompanied by CASC15 downregulation. CASC15 overexpression abolished the influence of isoflurane on cardiomyocytes' viability and apoptosis. H/R-induced excessive release of TNF-α and IL-6 was hold down by isoflurane, which was re-activated after CASC15 overexpression. The concentration changes of both MDA and SOD by isoflurane were reversed by CASC15 overexpression. CASC15 functioned as miR-542-3p sponger, and miR-542-3p overexpression attenuated the effect of isoflurane and CASC15 on H/R-induced cardiac I/RI. Isoflurane pretreatment was beneficial for the alleviation of cardiac I/RI by inhibiting oxidative stress and myocardial inflammatory response. CASC15/miR-542-3p axis was required for isoflurane to exhibit its protective activity against cardiac I/RI.


Asunto(s)
Apoptosis , Isoflurano , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , ARN Largo no Codificante , Animales , Ratas , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
J Neuroinflammation ; 20(1): 36, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788559

RESUMEN

BACKGROUND: Increasing evidence suggests that patients with Parkinson's disease (PD) present with peripheral autonomic dysfunction (AutD) that even precedes motor deficits, through which α-synuclein can spread to the central nervous system. However, the pathological mechanisms underlying AutD in prodromal PD remain unclear. Here, we investigated the role of α-synuclein and its interplay with the activation of Schwann cells (SCs) of the vagus nerve in AutD. METHODS: Rats were subjected to injection with adeno-associated viruses containing the human mutated A53T gene (AAV-A53T) or an empty vector into the left cervical vagus nerve and evaluated for gastrointestinal symptoms, locomotor functions, intestinal blood flow, and nerve electrophysiology. Further, we examined the impact of α-synucleinopathy on vagus nerves, SCs, and central nervous system neurons using electron microscopy, immunofluorescence, immunohistochemistry, and western blot. Finally, the role of Toll-like receptor 2 (TLR2) in regulating the neuroinflammation in the vagus nerve via MyD88 and NF-κB pathway was determined using genetic knockdown. RESULTS: We found that rats injected with AAV-A53T in the vagus nerve exhibited prominent signs of AutD, preceding the onset of motor deficits and central dopaminergic abnormalities by at least 3 months, which could serve as a model for prodromal PD. In addition, reduced intestinal blood flow and decreased nerve conduction velocity were identified in AAV-A53T-injected rats, accompanied by disrupted myelin sheaths and swollen SCs in the vagus nerve. Furthermore, our data demonstrated that p-α-synuclein was deposited in SCs but not in axons, activating the TLR2/MyD88/NF-κB signaling pathway and leading to neuroinflammatory responses. In contrast, silencing the TLR2 gene not only reduced inflammatory cytokine expression but also ameliorated vagal demyelination and secondary axonal loss, consequently improving autonomic function in rats. CONCLUSIONS: These observations suggest that overexpression of α-synuclein in the vagus nerve can induce symptoms of AutD in prodromal PD, and provide support for a deeper understanding of the pathological mechanisms underlying AutD and the emergence of effective therapeutic strategies for PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Humanos , Animales , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Síntomas Prodrómicos , Nervio Vago/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células de Schwann/metabolismo , Modelos Animales de Enfermedad
8.
Plant Dis ; 107(10): 3198-3210, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36890127

RESUMEN

Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.


Asunto(s)
Verticillium , Verticillium/fisiología , Resistencia a la Enfermedad/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Gossypium/genética , Gossypium/microbiología , Transducción de Señal
9.
Drug Dev Res ; 84(3): 423-432, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751971

RESUMEN

To improve the water solubility of anti-human immunodeficiency virus (HIV) agent DB02, an excellent non-nucleoside reverse-transcriptase inhibitor (NNRTI) obtained in our previous efforts, we designed and synthesized four phosphate derivatives of DB02 based on the molecular model of DB02 with RT. Here, the antiviral activity of these four derivatives was detected, leading to the discovery of compound P-2, which possessed a superior potency to the lead compound DB02 against wild-type HIV-1 and a variety of HIV-resistant mutant viruses significantly. Furthermore, the water solubility of P-2 was nearly 17 times higher than that of DB02, and the pharmacokinetic test in rats showed that P-2 demonstrate significantly improved oral bioavailablity of 14.6%. Our study showed that the introduction of a phosphate ester group at the end of the C-2 side chain of DB02 was beneficial to the improvement of its antiviral activity and pharmacokinetic properties, which provided a promising lead for the further development of S-DACOs type of NNRTIs.


Asunto(s)
VIH-1 , Fosfatos , Ratas , Animales , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacocinética , Modelos Moleculares , ARN Polimerasas Dirigidas por ADN , Relación Estructura-Actividad
10.
J Environ Sci (China) ; 124: 952-962, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182197

RESUMEN

The long-term impact of fulvic acid (FA) on partial nitritation (PN) system was initially examined in this study. The obtained results revealed that the FA lower than 50 mg/L had negligible effect on the nitrite accumulation rate (NAR nearly 100%) and ammonium removal rate (ARR 56.85%), while FA over 50 mg/L decreased ARR from 56.85% to 0.7%. Sludge characteristics analysis found that appropriate FA (<50 mg/L) exposure promoted the settling performance and granulation of PN sludge by removing Bacteroidetes and accumulating Chloroflexi. The analysis of metagenomics suggested that the presence of limited FA (0-50 mg/L) stimulated the generation of NADH, which favors the denitrification and nitrite reduction. The negative impact of FA on the PN system could be divided into two stages. Initially, limited FA (50-120 mg/L) was decomposed by Anaerolineae to stimulate the growth and propagation of heterotrophic bacteria (Thauera). Increasing heterotrophs competed with AOB (Nitrosomonas) for dissolved oxygen, causing AOB to be eliminated and ARR to declined. Subsequently, when FA dosage was over 120 mg/L, Anaerolineae were inhibited and heterotrophic bacteria reduced, resulting in the abundance of AOB recovered. Nevertheless, the ammonium transformation pathway was suppressed because genes amoABC and hao were obviously reduced, leading to the deterioration of reactor performance. Overall, these results provide theoretical guidance for the practical application of PN for the treatment of FA-containing sewage.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Benzopiranos , Reactores Biológicos/microbiología , Metagenómica , NAD/metabolismo , Nitritos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Aguas del Alcantarillado/microbiología
11.
J Cell Mol Med ; 26(5): 1392-1401, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35170195

RESUMEN

Breast cancer (BC) is the most prevalent cancer in women and the second leading cause for cancer-related death in women. LncRNA CCAT2 is involved in BC cell drug sensitivity. Drug resistance of BC cells after chemotherapy is the main obstacle to therapeutic effects. This study explored whether BC cell drug sensitivity to 5-Fu was related to lncRNA CCAT2-regulated mTOR pathway. Normal breast tissues and BC tissues before/after neoadjuvant chemotherapy were collected, and CCAT2 expression was detected by RT-qPCR. Correlation between CCATA2 expression and neoadjuvant chemotherapy efficacy was analysed using the Kendall's tau-b correlation analysis. Normal breast epithelial cells and BC cell lines were cultured. BC cell lines were treated with 5-Fu, and CCAT2 mRNA level in cells was detected. The 5-Fu-resistant MCF-7/5-Fu and MDA-MB-231/5-Fu cells were treated with CCAT2 overexpression/knockdown or CCI-779 (the mTOR pathway inhibitor). The mTOR pathway levels were detected. Expression of apoptosis-related factors was identified. A subcutaneous xenograft model was carried out. High CCAT2 expression was detected in BC tissues and BC drug-resistant cells after neoadjuvant chemotherapy, and a negative link was revealed between CCAT2 expression and efficacy of neoadjuvant chemotherapy. p-mTOR/mTOR in 5-Fu-resistant BC cells with inhibited CCAT2 was decreased, while CCAT2 overexpression activated the mTOR pathway. IC50 value, proliferation, cells in S phase increased and apoptosis reduced after CCAT2 overexpression. After si-CCAT2 or CCI-779 treatment, the growth rate of transplanted tumours was inhibited, while promoted after CCAT2 overexpression. CCAT2 may reduce BC cell chemosensitivity to 5-Fu by activating the mTOR pathway.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Apoptosis/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
J Neuroinflammation ; 19(1): 240, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183107

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a prevalent and devastating psychiatric illness. Unfortunately, the current therapeutic practice, generally depending on the serotonergic system for drug treatment is unsatisfactory and shows intractable side effects. Multiple evidence suggests that dopamine (DA) and dopaminergic signals associated with neuroinflammation are highly involved in the pathophysiology of depression as well as in the mechanism of antidepressant drugs, which is still in the early stage of study and well worthy of investigation. METHODS: We established two chronic stress models, including chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), to complementarily recapitulate depression-like behaviors. Then, hippocampal tissues were used to detect inflammation-related molecules and signaling pathways. Pathological changes in depressive mouse hippocampal astrocytes were examined by RNA sequencing. After confirming the dopamine receptor 2 (Drd2)/ß-arrestin2 signaling changes in the depressive mice brain, we then established the depressive mouse model using the ß-arrestin2 knockout mice or administrating the ß-arrestin2-biased Drd2 agonist to investigate the roles. Label-free mass spectrometry was used to identify the ß-arrestin2-binding proteins as the underlying mechanisms. We modeled neuroinflammation with interleukin-6 (IL-6) and corticosterone treatment and characterized astrocytes using multiple methods including cell viability assay, flow cytometry, and confocal immunofluorescence. RESULTS: Drd2-biased ß-arrestin2 pathway is significantly changed in the progression of depression, and genetic deletion of ß-arrestin2 aggravates neuroinflammation and depressive-like phenotypes. Mechanistically, astrocytic ß-arrestin2 retains STAT3 in the cytoplasm by structural combination with STAT3, therefore, inhibiting the JAK-STAT3 pathway-mediated inflammatory activation. Furtherly, pharmacological activation of Drd2/ß-arrestin2 pathway by UNC9995 abolishes the inflammation-induced loss of astrocytes and ameliorates depressive-like behaviors in mouse model for depression. CONCLUSIONS: Drd2/ß-arrestin2 pathway is a potential therapeutic target for depression and ß-arrestin2-biased Drd2 agonist UNC9995 is identified as a potential anti-depressant strategy for preventing astrocytic dysfunctions and relieving neuropathological manifestations in mouse model for depression, which provides insights for the therapy of depression.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Animales , Astrocitos/metabolismo , Corticosterona/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Trastorno Depresivo Mayor/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Hipocampo/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Receptores de Dopamina D2/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/patología , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
13.
J Biochem Mol Toxicol ; 36(11): e23176, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35968984

RESUMEN

The current study was set out to investigate the mechanism by which silenced long noncoding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) modulates the cell growth, migration, invasion, and drug sensitivity of breast cancer (BC) cells to 5-fluorouracil (5-Fu) with the involvement of miR-145 and p53. First, high CCAT2 expression was presented in BC cells and tissues. Subsequently, the links between CCAT2 expression and BC clinicopathological features were analyzed. Highly-expressed CCAT2 was linked to lymph node metastasis, positive progesterone receptor, estrogen receptor, and Ki-67 of BC cells. Then, the gain- and loss-of-function approaches were performed to measure the regulatory role of CCAT2 in the biological processes of BC cells. Silencing of CCAT2 suppressed in vitro cell growth, proliferation, invasion, migration abilities, and epithelial-mesenchymal transformation, increased cell apoptosis, and enhanced drug sensitivity of BC cells. Silencing of CCAT2 upregulated miR-145, which was poorly expressed in drug-resistant BC cells. p53 can bind to the miR-145 promoter region and increase miR-145 expression. Upregulation of miR-145 induced by silencing of CCAT2 can be invalidated by p53-siRNA. To conclude, p53-induced activation of miR-145 could be inhibited by CCAT2, while overexpression of CCAT2 could improve the drug resistance of BC cells to 5-Fu.


Asunto(s)
Antimetabolitos Antineoplásicos , Neoplasias de la Mama , Resistencia a Medicamentos , Fluorouracilo , Humanos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/genética , Resistencia a Medicamentos/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Antimetabolitos Antineoplásicos/farmacología
14.
Bioorg Chem ; 119: 105494, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34836643

RESUMEN

Both HIV and DENV are serious threats to human life, health and social economy today. So far, no vaccine for either HIV or DENV has been developed successfully. The research on anti-HIV or DENV drugs is still of great significance. In this study we developed a series of novel 2-Aryl-1H-pyrazole-S-DABOs with C6-strucutral optimizations as potent NNRTIs, among which, 8 compounds had low cytotoxicity and EC50 values in the range of 0.0508 âˆ¼ 0.0966 µM, and their selectivity index was SI > 1415 âˆ¼ 3940. In particular, two compounds 4a and 4b were identified to have good inhibitory effects on DENV of four serotypes. The EC50 of compound 4a and 4b against DENV-II (13.2 µM and 9.23 µM, respectively) were better than that of the positive control ribavirin (EC50 = 40.78 µM). In addition, the effect of C-6 substituents on the anti-HIV or anti-DENV activity of these compounds was also discussed.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , VIH-1/efectos de los fármacos , Pirazoles/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
15.
J Cell Mol Med ; 25(4): 1896-1910, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33465281

RESUMEN

Extracellular vesicles (Evs) participate in the development of rheumatoid arthritis (RA), but the mechanisms remain unclear. This study aimed to determine the mechanism by which microRNA-34a (miR-34a) contained in bone marrow mesenchymal stem cell (BM-MSC)-derived Evs functions in RA fibroblast-like synoviocytes (RA-FLSs). BM-MSC-derived Evs and an Evs inhibitor were extracted. A rat model of RA was established. miR-34a gain- and loss-of-function experiments were performed, and the inflammation in rat synovial fluid and tissues was detected. The role of miR-34a in RA-FLSs was also measured in vitro. The target gene of miR-34a was predicted using the online software TargetScan and identified using a dual-luciferase reporter gene assay, and the activation of the ATM/ATR/p53 signalling pathway was assessed. BM-MSC-derived Evs mainly elevated miR-34a expression, which reduced RA inflammation in vivo and inhibited RA-FLS proliferation and resistance to apoptosis in vitro, while inhibited miR-34a expression enhanced RA development. In addition, miR-34a could target cyclin I to activate the ATM/ATR/p53 signalling pathway, thus inhibiting abnormal RA-FLS growth and RA inflammation. Our study showed that miR-34a contained in BM-MSC-derived Evs could reduce RA inflammation by inhibiting the cyclin I/ATM/ATR/p53 signalling pathway.


Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Transducción de Señal , Animales , Apoptosis/genética , Artritis Reumatoide/patología , Biomarcadores , Biopsia , Células Cultivadas , Ciclina I/metabolismo , Masculino , MicroARNs/metabolismo , Ratas , Sinoviocitos/metabolismo , Sinoviocitos/patología , Proteína p53 Supresora de Tumor/metabolismo
16.
J Cell Mol Med ; 24(15): 8589-8602, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32652877

RESUMEN

Chemoresistance represents a major challenge in breast cancer (BC) treatment. This study aimed to probe the roles of LINC00160 in paclitaxel- and doxorubicin-resistant BC cells. Three pairs of BC and adjacent normal tissue were used for lncRNA microarray analysis. Paclitaxel-resistant MCF-7 (MCF-7/Tax) and doxorubicin-resistant BT474 (BT474/Dox) cells were generated by exposure of parental drug-sensitive MCF-7 or BT474 cells to gradient concentrations of drugs. Correlation between LINC00160 expression and clinical response to paclitaxel in BC patients was examined. Short interfering RNAs specifically targeting LINC00160 or TFF3 were designed to construct LINC00160- and TFF3-depleted BC cells to discuss their effects on biological episodes of MCF-7/Tax and BT474/Dox cells. Interactions among LINC00160, transcription factor C/EBPß and TFF3 were identified. MCF-7/Tax and BT474/Dox cells stable silencing of LINC00160 were transplanted into nude mice. Consequently, up-regulated LINC00160 led to poor clinical response to paclitaxel in BC patients. LINC00160 knockdown reduced drug resistance in MCF-7/Tax and BT474/Dox cells and reduced cell migration and invasion. LINC00160 recruited C/EBPß into the promoter region of TFF3 and increased TFF3 expression. LINC00160-depleted MCF-7/Tax and BT474/Dox cells showed decreased tumour growth rates in nude mice. Overall, we identified a novel mechanism of LINC00160-mediated chemoresistance via the C/EBPß/TFF3 axis, highlighting the potential of LINC00160 for treating BC with chemoresistance.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Paclitaxel/farmacología , ARN Largo no Codificante , Factor Trefoil-3/genética , Adulto , Animales , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Células MCF-7 , Ratones , Persona de Mediana Edad , Pronóstico , Interferencia de ARN , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Microvasc Res ; 131: 104013, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32428521

RESUMEN

Diabetes is frequently associated with structural and functional impairment of the microcirculation. Blood perfusion is an important indicator of both physiological and pathological conditions of the microcirculation. Given that temperature is closely related to blood perfusion and is more easily measured, blood perfusion can be estimated from variations in skin temperature using an inverse method. The aim of this paper was to develop a thermal analysis method for estimation of blood perfusion and apply it in the assessment of skin blood perfusion in diabetic rats. First, diabetes was induced in the rat models of the experimental group. Skin temperature from the rats left hind paws was measured during a 10-min local heating period followed by a 15-min cooling period. A simple one-dimensional heat transfer model, including an arteriolar vessel node, was used to describe the skin heat transfer process. The blood perfusion of the arteriole was estimated by correlating the calculated skin temperature with known experimental temperatures using a genetic algorithm. The results indicated that the average blood perfusion in the control group was higher during local heating and decreased faster during the cooling period, showing dynamic responses to the thermal stimuli. In contrast, the blood perfusion of diabetic rats was reduced compared with that of the control rats during the heating phase and the rate of decrease in perfusion during the cooling stage was similarly reduced, implying a slower response to thermal stimulation in these rats. It is interesting to note that diabetic rats fed a normal diet showed a similar blood perfusion pattern to that in the control rats, implying that diet may be important in the treatment of diabetes-associated microvascular dysfunction.


Asunto(s)
Algoritmos , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Angiopatías Diabéticas/diagnóstico , Microcirculación , Modelos Cardiovasculares , Temperatura Cutánea , Piel/irrigación sanguínea , Termometría , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Transferencia de Energía , Valor Predictivo de las Pruebas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional , Factores de Tiempo
18.
J Cell Mol Med ; 23(11): 7873-7878, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31454164

RESUMEN

The aim of this study was to evaluate the clinical feasibility of non-invasive prenatal testing (NIPT) to detect foetal copy number variations (CNVs). Next-generation sequencing for detecting foetal copy number variations (CNVs) was performed on the collected samples from 161 pregnancies with ultrasound anomalies and negative NIPT results for aneuploidy. The performance of NIPT for detecting chromosome aberrations was calculated. The sensitivity and specificity of NIPT for detecting CNVs > 1 Mb were 83.33% and 99.34%; the PPV and negative predictive rate (NPV) were 90.91% and 98.68%. Non-invasive prenatal testing can be performed to detect chromosomal aberrations in first trimester with high performance for CNVs, and occasional discordant cases are unavoidable.


Asunto(s)
Pueblo Asiatico/genética , Aberraciones Cromosómicas , Pruebas Prenatales no Invasivas/métodos , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Embarazo
19.
J Cell Mol Med ; 23(5): 3166-3177, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884120

RESUMEN

This study aims to explore the mechanism of Circular RNA CDR1as implicating in regulating 5-fluorouracil (5-FU) chemosensitivity in breast cancer (BC) by competitively inhibiting miR-7 to regulate CCNE1. Expressions of CDR1as and miR-7 in 5-FU-resistant BC cells were determined by RT-PCR. CCK-8, colony formation assay and flow cytometry were applied to measure half maximal inhibitory concentration (IC50), 5-Fu chemosensitivity and cell apoptosis. Western blot was used to detect the expressions of apoptosis-related factors. CDR1as was elevated while miR-7 was inhibited in 5-FU-resistant BC cells. Cells transfected with si-CDR1as or miR-7 mimic had decreased IC50 and colony formation rate, increased expressions of Bax/Bcl2 and cleaved-Caspase-3/Caspase-3, indicating inhibition of CDR1as and overexpression of miR-7 enhances the chemosensitity of 5-FU-resistant BC cells. Targetscan software indicates a binding site of CDR1as and miR-7 and that CCNE1 is a target gene of miR-7. miR-7 can gather CDR1as in BC cells and can inhibit CCNE1. In comparison to si-CDR1as group, CCNE1 was increased and chemosensitivity to 5-Fu was suppressed in si-CDR1as + miR-7 inhibitor group. When compared with miR-7 mimic group, CDR1as + miR-7 mimic group had increased CCNE1 and decreased chemosensitivity to 5-Fu. Nude mouse model of BC demonstrated that the growth of xenotransplanted tumour in si-CDR1as + miR-7 inhibitor group was faster than that in si-CDR1as group. The tumour growth in CDR1as + miR-7 mimic group was faster than that in miR-7 mimic group. CDR1as may regulate chemosensitivity of 5-FU-resistant BC cells by inhibiting miR-7 to regulate CCNE1.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Ciclina E/genética , MicroARNs/genética , Proteínas Oncogénicas/genética , ARN Largo no Codificante/genética , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Ratones , ARN Circular/genética
20.
J Cell Mol Med ; 23(8): 4921-4932, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31245927

RESUMEN

In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR-7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT-qPCR was applied to detect the expression of CDR1as and miR-7 in breast cancer tissues, breast cancer cell lines and corresponding drug-resistant cell lines. The correlation between CDR1as and miR-7 and between miR-7 and REGγ was evaluated. MCF-7-R and MDA-MB-231-R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki-67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR-7 expression was low, while REGγ was highly expressed in MCF-7-R and MDA-MB-231-R cells. CDR1as competitively inhibited miR-7 and up-regulated REGγ. Overexpression of miR-7 could reverse the enhanced sensitivity of silenced CDR1as to drug-resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki-67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR-7 and thus enhancing the sensitivity of drug-resistant breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Autoantígenos/metabolismo , Neoplasias de la Mama/genética , Cisplatino/farmacología , MicroARNs/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Largo no Codificante/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autoantígenos/genética , Neoplasias de la Mama/metabolismo , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA