Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(5): 695-702, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38287128

RESUMEN

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

2.
J Am Chem Soc ; 146(11): 7210-7215, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437461

RESUMEN

Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.

3.
Chemistry ; 30(18): e202303857, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38205617

RESUMEN

The methods for the cross-coupling of aryl(trialkyl)silanes are long-standing challenges due to the extreme inertness of C-Si(R3) bond, though the reaction is environmentally friendly and highly regioselective to synthesize biaryls. Herein, we report a copper-catalyzed cross-coupling of aryl(trialkyl)silanes and aryl via a radical mechanism. The reaction proceeds efficiently with aryl sulfonium salts as limiting reagents, exhibits broad substrate scope, and provides an important synthetic strategy to acquire biaryls, exemplified by unsymmetrical fluorescence probes and late-stage functionalization of drugs. Of note, the experimental and theoretical mechanistic studies revealed a radical mechanism where the copper catalyst and CsF play critical roles on the radical generation and desilylation process.

4.
Inorg Chem ; 63(13): 6067-6074, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489513

RESUMEN

The first examples of alkali metal selenite sulfates, namely, Na8(SeO3)(SO4)3 (1), Na2(H2SeO3)(SO4) (2), and K4(H2SeO3)(HSO4)2(SO4) (3), were successfully synthesized by hydrothermal reactions. Their structures display three different zero-dimensional configurations composed of isolated sulfate tetrahedra and selenite groups separated by alkali metals. Na8(SeO3)(SO4)3 (1) features a noncentrosymmetric structure, while Na2(H2SeO3)(SO4) (2) and K4(H2SeO3)(HSO4)2(SO4) (3) are centrosymmetric. Powder second-harmonic-generation measurements revealed that Na8(SeO3)(SO4)3 (1) shows a phase-matchable SHG intensity about 1.2 times that of KDP. UV-vis-NIR diffuse reflectance spectroscopic analysis indicated that Na8(SeO3)(SO4)3 (1) has a short UV cutoff edge and a large optical band gap, which makes it a possible UV nonlinear optical material. Theoretical calculations revealed that the birefringence of Na8(SeO3)(SO4)3 (1) is 0.041 at 532 nm, which is suitable for phase-matching condition. This work provides a good experimental foundation for the exploration of new UV nonlinear crystals in an alkali metal selenite sulfate system.

5.
Angew Chem Int Ed Engl ; 63(4): e202314228, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38019184

RESUMEN

Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.

6.
Angew Chem Int Ed Engl ; 62(12): e202218468, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36633173

RESUMEN

Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.

7.
Angew Chem Int Ed Engl ; 62(43): e202310764, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668107

RESUMEN

Pnictogen bonding (PnB) has gained recognition as an appealing strategy for constructing novel architectures and unlocking new properties. Within the synthetic community, the development of a straightforward and much simpler protocol for cross-electrophile C-PIII coupling remains an ongoing challenge with organic halides. In this study, we present a simple strategy for photoinduced PnB-enabled cross-electrophile C-PIII couplings using readily available chlorophosphines and organic halides via merging single electron transfer (SET) and halogen atom transfer (XAT) processes. In this photomediated transformation, the PnB formed between chlorophosphines and alkyl amines facilitates the photogeneration of PIII radicals and α-aminoalkyl radicals through SET. Subsequently, the resulting α-aminoalkyl radicals activate C-X bonds via XAT, leading to the formation of carbon radicals. This methodology offers operational simplicity and compatibility with both aliphatic and aromatic chlorophosphines and organic halides.

8.
Angew Chem Int Ed Engl ; 62(31): e202305088, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119088

RESUMEN

Visible-light-induced photoreaction of carboranes is an effective approach to prepare carborane-containing compounds. While several methods involving boron-centered carboranyl radicals have been established, those for carbon-centered carboranyl radicals are underdeveloped, except for the UV-light-promoted photohomolysis. Herein, we describe a simple but effective approach to access carbon-centered carboranyl radicals by photoreduction of carborane phosphonium salts under blue light irradiation without using transition metals and photocatalysts. The utility of the method was demonstrated by successfully preparing a range of carborane-oxindole-pharmaceutical hybrids by radical cascade reactions. Computational and experimental studies suggest that the carbon-centered carboranyl radicals are generated by single-electron transfer of the photoactive charge-transfer complexes between the salts and the additive potassium acetate.

9.
Angew Chem Int Ed Engl ; 62(18): e202300703, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36808789

RESUMEN

"Through space" palladium/hydrogen shift is an efficient strategy to achieve selective functionalization of a specific remote C-H bond. Compared with relatively extensive exploited 1,4-palladium migration process, the relevant 1,5-Pd/H shift was far less investigated. We herein report a novel 1,5-Pd/H shift pattern between a vinyl and an acyl group. Through the pattern, rapid access to 5-membered-dihydrobenzofuran and indoline derivatives has been achieved. Further studies have unveiled an unprecedented trifunctionalization (vinylation, alkynylation and amination) of a phenyl ring through 1,5-palladium migration relayed decarbonylative Catellani type reaction. A series of mechanistic investigations and DFT calculations have provided insights into the reaction pathway. Notably, it was unveiled that the 1,5-palladium migration in our case prefers a stepwise mechanism involving a PdIV intermediate.

10.
Angew Chem Int Ed Engl ; 62(41): e202306307, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340517

RESUMEN

The direct arylation polycondensation (DArP) has become one of the most important methods to construct conjugated polymers (CPs). However, the homocoupling side-reactions of aryl halides and the low regioseletive reactivities of unfunctionalized aryls hinder the development of DArP. Here, an efficient Pd and Cu co-catalyzed DArP was developed via inert C-S bond cleavage of aryl thioethers, of which robustness was exemplified by over twenty conjugated polymers (CPs), including copolymers, homopolymers, and random polymers. The capture of oxidative addition intermediate together with experimental and theoretic results suggested the important role of palladium (Pd) and copper (Cu) co-catalysis with a bicyclic mechanism. The studies of NMR, molecular weights, trap densities, two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), and the charge transport mobilities revealed that the homocoupling reactions were significantly suppressed with high regioselectivity of unfunctionalized aryls, suggesting this method is an excellent choice for synthesizing high performance CPs.

11.
Chemistry ; 28(35): e202200869, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543280

RESUMEN

Aryl sulfides are in great demands in drugs and materials sciences. To avoid using nucleophilic and noxious thiols, many efforts have been focused on exploring novel sulfide resources. Herein, a reductive Pd-catalyzed, Ni-mediated method to synthesize aryl sulfides via a sulfide transfer reaction is developed. The utility and scope of this reaction is exemplified by various aryl electrophiles and aryl sulfides. Mechanistic studies reveal two competing catalytic cycles of sulfide transfer and aryl transfer in this reaction, where the former one is favored over the later one because of the large energy barrier difference during the transmetalation. Moreover, two important chemicals are late-stage functionalized by this method, exhibiting the potential applications in drugs and materials science.


Asunto(s)
Compuestos de Sulfhidrilo , Sulfuros , Catálisis
12.
Angew Chem Int Ed Engl ; 61(16): e202116071, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35118784

RESUMEN

Chalcogen bonding (ChB) has emerged as a promising tool in organic synthesis. However, compared with the well-developed selenium- and tellurium-based salt catalysts, the ChB catalysis of sulfonium salts is still unknown. Here, we report a new type of alkynyl-sulfonium salt ChB catalysis for various ionic transformations, including transfer hydrogenation, bromination, bromolactonization, dimerization of 1,1-diphenylethylene, nitro-Michael addition reaction and Ritter reaction. More importantly, the photocapability of ChB was first demonstrated to generate alkynyl radicals for the synthesis of a variety of chalcogenoacetylenes. Mechanistic studies shed light on the mechanism of the photoinduced reactions and confirmed the involvement of alkynyl radicals which are difficult to generate otherwise.

13.
Angew Chem Int Ed Engl ; 60(48): 25477-25484, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34490742

RESUMEN

The sigma (σ)-hole effect has emerged as a promising tool to construct novel architectures endowed with new properties. A simple yet effective strategy for the generation of monofluoromethyl radicals is a continuing challenge within the synthetic community. Fluoromethylphosphonium salts are easily available, air- and thermally stable, as well as simple-to-handle. Herein, we report the ability of the σ-hole effect to facilitate the visible-light-triggered photolysis of phosphonium iodide salts, a charge-transfer complex, selectively giving fluoromethyl radicals. The usefulness and versatility of this new protocol are demonstrated through the mono-, di-, and trifluoromethylation of a variety of alkenes.

14.
Angew Chem Int Ed Engl ; 60(20): 11414-11422, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33644970

RESUMEN

α-aryl α,ß-unsaturated carbonyls represent an important class of derivatizable synthetic intermediates, however, the synthesis of such compounds still remains a challenge. Recently, we showcased a novel Z-selective α-arylation of α,ß-unsaturated nitriles with aryl sulfoxides via [3,3]-rearrangement involving an Morita-Baylis-Hillman (MBH) process. Herein, we demonstrate the feasibility of reversing the stereoselectivity of such MBH-type [3,3]-rearrangement by switching to a new pair of rearrangement partners consisting of aryl iodanes and α,ß-unsaturated oxazolines. As a result, the two protocols complement each other in approaching E- or Z-α-aryl α,ß-unsaturated carbonyl derivatives. Mechanistic studies reveal a possible reaction pathway and provide an explanation for the opposite stereoselectivities.

15.
Angew Chem Int Ed Engl ; 60(5): 2339-2345, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017503

RESUMEN

The Morita-Baylis-Hillman (MBH) reaction and [3, 3]-sigmatropic rearrangement are two paradigms in organic synthesis. We have merged the two types of reactions to achieve [3,3]-rearrangement of aryl sulfoxides with α,ß-unsaturated nitriles. The reaction was achieved by sequentially treating both coupling partners with electrophilic activator (Tf2 O) and base, offering an effective approach to prepare synthetically versatile α-aryl α,ß-unsaturated nitriles with Z-selectivity through direct α-C-H arylation of unmodified α,ß-unsaturated nitriles. The control experiments and DFT calculations support a four-stage reaction sequence, including the assembly of Tf2 O activated aryl sulfoxide with α,ß-unsaturated nitrile, MBH-like Lewis base addition, [3,3]-rearrangement, and E1cB-elimination. Among these stages, the Lewis base addition is diastereoselective and E1cB-elimination is cis-selective, which could account for the remarkable Z-selectivity of the reaction.

16.
J Am Chem Soc ; 142(15): 6884-6890, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32164406

RESUMEN

Here we describe an asymmetric [3,3]-sigmatropic rearrangement of aryl iodanes that enables the enantioselective α-arylation of chiral 2-oxazolines, thereby producing valuable chiral α-aryl carbonyl compounds. The success of this protocol hinges on the selective assembly of aryl iodanes with 2-oxazolines and the smooth deprotonation of the in situ-generated iodonium-imine species. The nearly neutral and mild conditions of the reaction allow it to tolerate a wide variety of functional groups. Moreover, the remaining iodine atom in the products not only provides a versatile platform for further elaboration of such molecules but also supplies the asymmetric hypervalent iodine chemistry with a new class of chiral scaffolds.

18.
Inorg Chem ; 59(3): 2051-2061, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31967459

RESUMEN

Dioxygen O-O bond activation is a process for oxygenases and oxidases to perform biological functions and synthetic biomimetic catalysts to carry out oxygenation reactions using molecular O2 as an oxidant. Inspired by the experimental development of a CoIII-peroxo complex (i.e., [CoIII(TBDAP)(O2)]+, TBDAP = N,N-ditert-butyl-2,11-diaza[3.3](2,6)-pyridinophane) that exhibits dioxygenase-like reactivity to activate nitriles, a density functional theory (DFT) mechanistic study has been carried out to understand how the peroxo ligand is broken to activate nitriles. The study unveils that the O-O bond cleavage takes place via conversion to a CoII-superoxo complex aided by nitrile coordination, followed by formation of a five-membered intermediate via superoxo O2 radical nucleophilic attack at the nitrile carbon. Finally, a [1,3]-sigmatropic rearrangement-like process breaks the dioxygen bond. The otherwise difficult [1,3]-sigmatropic rearrangement is enabled by the mediation of CoIII(TBDAP) which alters a concerted rearrangement to a sequential process of O-O bond cleavage and N-O bond formation. Expectedly, the unveiling of the O-O bond cleavage mechanism could offer a clue for the development of biomimetic metal oxygenation catalysts.


Asunto(s)
Quelantes/química , Cobalto/química , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Dioxigenasas/química , Peróxidos/química , Quelantes/síntesis química , Quelantes/metabolismo , Cobalto/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Dioxigenasas/metabolismo , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Oxígeno/metabolismo , Peróxidos/metabolismo
19.
Chemistry ; 25(15): 3939-3949, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30623497

RESUMEN

Acceptorless dehydrogenative coupling (ADC) reactions generally involve a nucleophile (e.g., amine) as a coupling partner. Intriguingly, it has been reported that nitriles could also act as nucleophiles in ADC reactions, achieving the α-olefination of nitriles with primary or secondary alcohols by employing a manganese or ruthenium pincer complex as the catalyst, respectively. Although different mechanisms have been postulated for the two catalytic systems, the results of our DFT mechanistic study, reported herein, have allowed us to propose a unified mechanism to account for both nitrile α-olefinations. The reactions take place in four stages, namely alcohol dehydrogenation, nitrile activation to generate a nucleophilic metal species, coupling of an aldehyde or ketone with the metal species to form a C-C bond and to transfer a nitrile (Cα -)H atom to the carbonyl group, and dehydration by transferring the protonic (N-)H to the hydroxy group. A notable feature of the coupling stage is the activation of water or alcohol to give an intermediate featuring an OH- - or OR- -like group that activates a nitrile Cα -H bond. Moreover, the mechanism can even be applied to the base (KOtBu, modeled by the (KOtBu)4 cluster)-catalyzed Knoevenagel condensation of nitriles with ketones, which further indicates the generality of the mechanism and the resemblance of the metal pincer complexes to the (KOtBu)4 base. We expect these in-depth mechanistic insights and the finding of the resemblance of the metal pincer complexes to the (KOtBu)4 cluster could assist the development of new ADC reactions.

20.
J Org Chem ; 84(21): 13983-13991, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589038

RESUMEN

Density functional theory mechanistic study has been carried out to account for the base-free nickel-catalyzed Suzuki-Miyaura coupling of acid fluorides (ArC(O)F) with boronic acids (Ar'B(OH)2). After oxidative addition to break the C-F bond of acid fluoride, the resultant ArC(O)[Ni]F species undergoes transmetalation with Ar'B(OH)2 to give ArC(O)[Ni]Ar'. Subsequently, ArC(O)[Ni]Ar' can either undergo decarbonylation, finally leading to the coupling product (ArAr'), or reductive elimination to give ketone byproduct ArC(O)Ar'. The kinetic competition between the two pathways controls the chemoselectivity of the reaction, and transmetalation is the rate-determining step of the coupling. Importantly, it was found that transmetalation prefers a stepwise mechanism over a conventional concerted one. Detailed analyses indicate that the strong fluorophilicity of boron facilitates the base-free transmetalation and the coordination interaction between an oxygen atom of boronic acid and nickel gears the base-free transmetalation to undergo the stepwise pathway. The stepwise transmetalation mechanism also involves the nickel-catalyzed Suzuki-Miyaura coupling of aldehydes with ketone (PhC(O)CF3) as the transmetalation promoter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA