Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Analyst ; 149(3): 789-799, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38113057

RESUMEN

Viscosity is a crucial indicator of the cellular microenvironment, which can affect the normal level of cellular metabolism. Aberrant levels of viscosity can result in the emergence of a variety of physiological problems including diabetes, Parkinson's disease, inflammation, etc. Therefore, it is crucial to exploit effective assays that can detect viscosity levels in living cells and organisms. Three new nitrogen-containing heterocyclic fluorescent probes, CNO, CNN and CNNB, were designed and prepared by coupling curcumin with isoxazole, pyrazole, and phenylpyrazole rings, respectively. The fluorescence response properties of these probes to the viscosity level were analyzed in parallel. All the probes, CNO, CNN and CNNB, exhibited a significantly enhanced fluorescence response to viscosity in a broad pH range with excellent photostability, sensitivity and anti-interference ability. The sensing mechanisms of these probes for viscosity were verified by DFT calculations. In addition, these probes were successfully employed for detecting viscosity levels in living HeLa cells and zebrafish. This research compares the viscosity-responsive capabilities of curcumin-based fluorescent probes containing different nitrogen-containing heterocyclic structures, and provides a new design strategy and guidance for developing curcumin-based fluorescent probes for viscosity analysis.


Asunto(s)
Curcumina , Colorantes Fluorescentes , Humanos , Animales , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Células HeLa , Pez Cebra , Curcumina/farmacología , Viscosidad , Nitrógeno
2.
Analyst ; 148(8): 1867-1876, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36942689

RESUMEN

A multifunctional dehydroabietic acid-based fluorescent probe (CPS) was designed and synthesized by introducing the 2,6-bis(1H-benzo[d]imidazol-2-yl)phenol fluorophore. The probe CPS could selectively recognize Cu2+, Zn2+ and ClO- ions from other analytes, and it showed fluorescence quenching behavior toward Cu2+ and a ratiometric response to Zn2+ and ClO- by changing from green fluorescence to blue and cyan, respectively. The detection limits toward Cu2+, Zn2+ and ClO- ions were 3.8 nM, 0.253 µM and 0.452 µM, respectively. In addition, CPS presented many fascinating merits, such as high selectivity, a short response time (15-20 s), a wide pH range (3-10) and high photostability. The sensing mechanisms of CPS were verified by 1H-NMR, ESI-MS, FT-IR and Job's plot methods. Meanwhile, CPS exhibited satisfactory detection performance in water samples. More importantly, the probe could be applied as a promising tool for visual bioimaging of three ions in living cells and zebrafishes.


Asunto(s)
Colorantes Fluorescentes , Zinc , Colorantes Fluorescentes/química , Iones , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Zinc/química , Ácido Hipocloroso/química
3.
Analyst ; 148(8): 1824-1837, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36939165

RESUMEN

Hydrogen peroxide (H2O2) is involved in many important tasks in normal cell metabolism and signaling. However, abnormal levels of H2O2 are associated with the occurrence of several diseases. Therefore, it is important to develop a new method for the detection of H2O2in vivo and in vitro. A turn-off sensor, 2,2-difluoro-4,6-bis(3-methoxy-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)styryl)-2H-1,3,2-dioxaborine (DFCB), based on curcumin was developed for the detection of H2O2. The DFCB, an orange-emitting sensor, was constructed by employing 2,2-difluoro-4,6-bis(4-hydroxy-3-methoxystyryl)-2H-1,3,2-dioxaborine (DFC) as the main carrier, and 2-(4-bromomethylphenyl)-4,4,5,5-tetramethyl-1,3,2-doxaborolane as the recognition site. The recognition group on the DFCB sensor could be completely cleaved by H2O2 to generate the intermediate DFC, which would lead to a colorimetric change from bright orange to light blue accompanying by a significantly quenched fluorescence, which could be seen by the naked eye. This sensor exhibited a highly specific fluorescence response to H2O2, in preference to other relevant species, with an excellent anti-interference performance. The sensor DFCB also possessed some advantages including a wide pH response range (6-11), a broad linear range (0-300 µM), and a low detection limit (1.31 µM). The sensing mechanism of the DFCB sensor for H2O2 was verified by HRMS analysis, 1H-NMR titration and DFT calculations. In addition, the use of the DFCB sensor was compatible with the fluorescence imaging of H2O2 in living cells and zebrafish.


Asunto(s)
Curcumina , Animales , Colorimetría/métodos , Peróxido de Hidrógeno/análisis , Pez Cebra , Colorantes Fluorescentes/química
4.
Analyst ; 147(10): 2080-2088, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35510666

RESUMEN

A simple yet highly effective camphor-derived fluorescent probe named 3-(anthracen-9-ylmethylene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one oxime (ATHO) was developed based on an oxime recognition receptor and anthracene fluorophore. The probe ATHO exhibited a remarkably enhanced fluorescence response to HClO (∼7.2 fold). Meanwhile, this probe exhibited a low detection limit (0.118 µM), ultrafast response time (within seconds), excellent photostability (>260 min), wide linear range (0-180 µM), low probe concentration (2 µM), and high selectivity toward HClO over various interfering species. The sensing mechanism of the probe ATHO for HClO was supported by HRMS analysis and theoretical calculations. Furthermore, the probe ATHO was utilized to quantitatively determine HClO levels in environmental water samples. Additionally, the biological imaging of the probe ATHO for exogenous and endogenous HClO was successfully demonstrated in vitro and in vivo.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Alcanfor , Fluorescencia , Colorantes Fluorescentes/farmacología , Ácido Hipocloroso/análisis , Oximas
5.
Macromol Rapid Commun ; 43(2): e2100608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699661

RESUMEN

Cellulose is the most abundant natural polymer with good biodegradability and biocompatibility. In this paper, a novel fluorescent probe DAC-SD-NA for aluminum (Al3+ ) detection is successfully synthesized based on dialdehyde cellulose (DAC). DAC-SD-NA exhibited a remarkable "turn-on" fluorescence response to Al3+ in a wide pH range, and the fluorescence color of DAC-SD-NA solution turned from colorless to bright blue at the presence of Al3+ . The detection limit for Al3+ is computed to be 6.06×10-7 m. The reaction mechanism of DAC-SD-NA towards Al3+ is confirmed by Job's plot, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. In view of DAC-SD-NA exhibited good sensitivity and selectivity, it is applied to detect Al3+ in real water. What's more, DAC-SD-NA-loaded fluorescent hydrogel can serve as a convenient tool for the detection of Al3+ .


Asunto(s)
Colorantes Fluorescentes , Bases de Schiff , Aluminio , Celulosa/análogos & derivados , Espectrometría de Fluorescencia
6.
Analyst ; 146(23): 7294-7305, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34749386

RESUMEN

A novel fluorescent probe 2-(4-(diethylamino)-2-hydroxybenzylidene)-N-(2,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)hydrazinecarbothioamide (HT) was prepared in this study by a condensation reaction. HT has been confirmed to possess high specificity toward Ga3+ over other metal ions (including Al3+ and In3+) via a distinct fluorescence light-up response. Moreover, HT exhibited good detection performances for Ga3+ including high selectivity, excellent anti-interference ability, a wide working pH range, and good reversibility. The association constant and limit of detection (LOD) were calculated to be 5.34 × 103 M-1 and 1.18 × 10-6 M, respectively. The detection mechanism of HT toward Ga3+ was proposed and confirmed by 1H NMR analysis, HRMS analysis, and DFT calculations. A simple test strip-based portable detecting device and a molecular INHIBIT logic circuit were established for improving its practical applicability. Furthermore, the desirable sensing performance of HT for Ga3+ was successfully reconfirmed in MCF-7 cells and zebrafish.


Asunto(s)
Colorantes Fluorescentes , Galio , Pez Cebra , Animales , Galio/análisis , Humanos , Hidrazinas , Límite de Detección , Células MCF-7 , Espectrometría de Fluorescencia , Tioamidas
7.
Analyst ; 147(1): 87-100, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34842861

RESUMEN

A novel dual-functional probe N'-(2-hydroxy-5-((4,7,7-trimethyl-3-oxobicyclo[2.2.1] heptan-2-ylidene)methyl) benzylidene)picolinohydrazide (PSH) was constructed from natural camphor. This probe showed strong yellow-green fluorescence at 535 nm due to its aggregation-induced emission (AIE) feature. Interestingly, the probe PSH displayed a significant turn-on fluorescence response towards Al3+ (green fluorescence at 500 nm) and Zn2+ (orange fluorescence at 555 nm) at two different emissive channels. The detection limits of PSH towards Al3+ and Zn2+ were found to be 12.1 nM and 14.2 nM, respectively. PSH exhibited excellent selectivity and anti-interference performance and could distinguish between Al3+/Zn2+ and identify whether Zn2+ exists in the PSH-Al3+ complex by adding ATP. The binding mechanisms between PSH and Al3+/Zn2+ ions were supported by 1H NMR, HRMS analysis, and density functional theory (DFT) calculations. Based on its outstanding sensing properties, the probe PSH was used to establish molecular logic function gates. Moreover, the probe PSH could be applied to detect Al3+ and Zn2+ in real environmental water, and fluorescence detection was well demonstrated by test strips. Furthermore, the probe PSH was employed for imaging Al3+ and Zn2+ in HeLa cells and zebrafish.


Asunto(s)
Alcanfor , Colorantes Fluorescentes , Animales , Células HeLa , Humanos , Pez Cebra , Zinc
8.
Anal Bioanal Chem ; 413(25): 6267-6277, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34355255

RESUMEN

In this work, a novel fluorescent probe CBO was synthesized for detecting Fe2+ using the natural monoterpenketone camphor as the starting material. The probe CBO displayed turn-on fluorescence to Fe2+ accompanied by the solution change from colorless to green. As expected, there was an excellent linear relationship between the fluorescence intensity of probe CBO and the concentration of Fe2+ (0-20 µM), and the detection limit was as low as 1.56×10-8 M. In particular, CBO could selectively sense Fe2+ more than other analytes (Fe3+ included) through the N-oxide strategy, and quickly responded to Fe2+ (60 s) over a wide pH (4-14) range. Additionally, based on the rapid fluorescence response of CBO to Fe2+, a simple test strip-based detector was designed for boosting practical applicability. The probe CBO had been successfully applied to the fluorescence imaging of Fe2+ in onion cells and living zebrafish. The probe CBO was a powerful tool of detecting Fe2+ level in organisms, which was of significance to understand the role of Fe2+ in Fe2+-related physical processes and diseases.


Asunto(s)
Alcanfor/química , Colorantes Fluorescentes/química , Hierro/química , Animales , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Cebollas/citología , Sensibilidad y Especificidad , Pez Cebra
9.
Photochem Photobiol Sci ; 19(1): 49-55, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31793618

RESUMEN

A dual-signal probe PPN based on the natural ß-pinene derivative nopinone was synthesized for the colorimetric detection of Cu2+ and ratiometric detection of Ag+. Upon the addition of Ag+, a significant fluorescence change from blue to green was observed with a low detection limit (0.86 µM). However, upon the addition of Cu2+, a significant color change from colorless to yellow was observed with a low detection limit (0.56 µM). The novel probe PPN was applied as a probe for the colorimetric detection of Cu2+ and ratiometric detection of Ag+ with a high selectivity, good sensitivity and fast response time. The detection mechanisms of probe PPN for Cu2+/Ag+ were confirmed by 1H NMR and HRMS-ESI. Besides, probe PPN could sense Cu2+/Ag+ on test strips. Additionally, probe PPN could be applied to quantitatively detect the concentration of Ag+ in water samples and image Ag+ in living cells.

10.
Analyst ; 145(3): 1033-1040, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31834331

RESUMEN

A novel fluorescent probe (OFN) based on nopinone for the detection of hypochlorite has been developed. The probe OFN exhibited a colorimetric and ratiometric response to hypochlorite with good selectivity, high sensitivity (the low detection limit is 0.136 µM) and fast response time (30 s). In response to ClO-, an obvious change was observed in both the fluorescence and absorption spectra, followed by the visible color change from colorless to yellow and the fluorescence color change from yellow to green. The sensing mechanism confirmed that the oxime group of OFN was oxidized to the aldehyde group, which was proved by HRMS and 1H NMR. What is more, the probe was used not only to detect the concentration of ClO- in water samples but also for monitoring ClO- in living cells.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Colorimetría/métodos , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Agua/química , Animales , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/patología , Ratones , Microscopía Confocal , Teoría Cuántica , Células RAW 264.7 , Espectrometría de Fluorescencia
11.
Bioorg Med Chem Lett ; 27(11): 2360-2363, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431878

RESUMEN

A series of new nopinone-based thiosemicarbazone derivatives were designed and synthesized as potent anticancer agents. All these compounds were identified by 1H NMR, 13C NMR, HR-MS spectra analyses. In the in vitro anticancer activity, most derivatives showed considerable cytotoxic activity against three human cancer cell lines (MDA-MB-231, SMMC-7721 and Hela). Among them, compound 4i exhibited most potent antitumor activity against three cancer cell lines with the IC50 values of 2.79±0.38, 2.64±0.17 and 3.64±0.13µM, respectively. Furthermore, the cell cycle analysis indicated that compound 4i caused cell cycle arrest of MDA-MB-231 cells at G2/M phase. The Annexin V-FITC/7-AAD dual staining assay also revealed that compound 4i induced the early apoptosis of MDA-MB-231 cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Antineoplásicos/síntesis química , Hidrocarburos Aromáticos con Puentes/síntesis química , Hidrocarburos Aromáticos con Puentes/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Tiosemicarbazonas/síntesis química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125108, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270367

RESUMEN

Cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) act as significant roles in many physiological processes, and their abnormal proliferation will cause multiple diseases including Alzheimer's disease, Parkinson's disease, Cardiovascular disease, atherosclerosis, and soft tissue damage. However, It is challenging work to develop a efficient method for differentiating and detecting GSH, Cys and Hcy because of their significant similarity in structures and functions. In this work, a smart fluorescent probe FBCN based on curcumin was rationally devised and developed by etherifying the phenol hydroxyl group on FBC with NBD-Cl, which emitted strong green at 516 nm. FBCN distinguished Hcy from Cys/GSH with naked eyes based on the color variation of probe solution in sunlight. Meanwhile, GSH induced the powerful fluorescence quenching of probe solution, but the fluorescence color of FBCN solution transformed from green to luminous yellow accompanied with emission wavelength redshifted from 516 nm to 540 nm or 553 nm in the existence of Hcy and Cys, respectively. Probe FBCN had outstanding sensitivity and anti-interference, low detection limit (56.5 nM, 77.7 nM, and 288 nM corresponded to Cys, Hcy, and GSH, respectively), short response time (the response time of FBCN to Cys, Hcy and GSH was 1 min, 2 min and 5 min, respectively). The DFT calculation and HRMS had verified the sensing mechanism of FBCN to biothiols. In addition, the probe was successfully utilized to detect three biothiols levels in living cell and zebrafish.

13.
Int J Biol Macromol ; 280(Pt 3): 136018, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39326599

RESUMEN

Hydrogen sulfide (H2S) is considered one of the most important gaseous transmitters in the metabolic system, and the abnormal concentration of H2S is associated with a variety of diseases. Up to now, it is still a challenge to develop a portable assay for H2S even though the research about the detection of H2S is booming. Herein, a novel bifunctional dialdehyde-cellulose fluorescent probe DAC-DPD was prepared with high selectivity and sensitivity to H2S with colorimetric and fluorescent "turn-on" characteristics, and the limit of detection (LOD) of DAC-DPD for H2S was 0.831 µM. The sensing mechanism of DAC-DPD's to H2S was a Michael addition reaction confirmed by HRMS, 1H NMR and density-functional theory (DFT) calculations. DAC-DPD can be used to detect H2S in red wine samples. In Addition, the prepared DAC-DPD embedded fluorescent membrane can be used as a reliable sensing platform for rapid detection of H2S. It provided a convenient and rapid detection material, simplifying the detection process of H2S, which is of great significance for the development of cellulose-based fluorescent smart material.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125191, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39342726

RESUMEN

Hydrazine (N2H4) has been extensively utilized as a highly reactive chemical reagent. However, it is also seriously harmful to human beings and ecosystem. Thus, the development of an efficient detecting method for hydrazine is desirable. Here, caffeic acid was chose as starting material to synthesize a new ratiometric fluorescent probe HPA for detecting hydrazine. This probe possessed the specific recognition ability for hydrazine over other analytes with low detection limit (0.106 µM) and extremely short time (60 s). The sensing mechanism of probe HPA for hydrazine was proved by 1H NMR titration and theoretical calculations. In addition, the probe HPA was loaded on paper strip for rapid quantitative detection of hydrazine with the aid of a software (Image J). The effective detecting performances of probe HPA for hydrazine were verified in environmental water samples as well as in living cells. Thus, HPA has great potential for detection and analysis of hydrazine in health supervision and environmental protection.

15.
Biomech Model Mechanobiol ; 23(5): 1449-1468, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38671153

RESUMEN

To provide reference and theoretical guidance for establishing human body dynamics models and studying biomechanical vibration behavior, this study aimed to develop and verify a computational model of a three-dimensional seated human body with detailed anatomical structure under complex biomechanical characteristics to investigate dynamic characteristics and internal vibration behaviors of the human body. Fifty modes of a seated human body were extracted by modal method. The intervertebral disc and head motions under uniaxial white noise excitation (between 0 and 20 Hz at 1.0, 0.5 and 0.5 m/s2 r.m.s. for vertical, fore-aft and lateral direction, respectively) were computed by random response analysis method. It was found that there were many modes of the seated human body in the low-frequency range, and the modes that had a great impact on seated human vibration were mainly distributed below 13 Hz. The responses of different positions of the spine varied greatly under the fore-aft and lateral excitation, but the maximum stress was distributed in the lumbar under different excitations, which could explain why drivers were prone to lower back pain after prolonged driving. Moreover, there was a large vibration coupling between the vertical and fore-aft direction of an upright seated human body, while the vibration couplings between the lateral and other directions were very small. Overall, the study could provide new insights into not only the overall dynamic characteristics of the human body, but also the internal local motion and biomechanical characteristics under different excitations.


Asunto(s)
Vibración , Humanos , Fenómenos Biomecánicos , Sedestación , Simulación por Computador , Masculino , Modelos Biológicos , Estrés Mecánico , Adulto , Disco Intervertebral/fisiología
16.
Talanta ; 277: 126355, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838563

RESUMEN

Acute liver injury (ALI) is a frequent and devastating liver disease that has been made more prevalent by the excessive use of chemicals, drugs, and alcohol in modern life. Hypochlorous acid (HClO), an important biomarker of oxidative stress originating mainly from the mitochondria, has been shown to be intimately connected to the development and course of ALI. Herein, a novel BODIPY-based NIR ratiometric fluorescent probe Mito-BS was constructed for the specific recognition of mitochondrial HClO. The probe Mito-BS can rapidly respond to HClO within 20 s with a ratiometric fluorescence response (from 680 nm to 645 nm), 24-fold fluorescence intensity ratio enhancement (I645/I680), a wide pH adaptation range (5-9) and the low detection limit (31 nM). The probe Mito-BS has been effectively applied to visualize endogenous and exogenous HClO fluctuations in living zebrafish and cells based on its low cytotoxicity and prominent mitochondria-targeting ability. Furthermore, the fluorescent probe Mito-BS makes it possible to achieve the non-invasive in-situ diagnosis of ALI through in mice, and provides a feasible strategy for early diagnosis and drug therapy of ALI and its complications.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Mitocondrias , Pez Cebra , Ácido Hipocloroso/análisis , Ácido Hipocloroso/metabolismo , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Humanos , Compuestos de Boro/química , Imagen Óptica , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen
17.
Carbohydr Polym ; 328: 121726, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220346

RESUMEN

Fluorescent sensors available for metal ions detection have been extensively developed in recent years. However, developing an ultrasensitive fluorescent sensor for highly selectively detecting Al3+ based on cellulose remains a challenge. In this study, an ethylcellulose-based flavonol fluorescent sensor named EC-BHA was synthesized by the esterification of ethylcellulose (EC) with a new flavonol derivative 4-(2-(2,3-bis(ethoxymeothy)phenyl)-3-hydroxy-4-oxo-4-H-chromen-7-yl) benzoic acid (BHA). The fluorescence intensity of EC-BHA exhibited a 180-fold increase at 490 nm after binding with Al3+ and provided an ultralow detection limit of 13.0 nM. The sensor showed some exceptional sensing properties including a broad pH range (4-10), large Stokes shifts (190 nm), and a short response time (3 min). This sensor was successfully applied for determining trace Al3+ in food samples as well as in plant tissue. Moreover, the electrostatic spun film EBP was fabricated by blending EC-BHA with PS (polystyrene) via electrostatic spinning technique and utilized for selective detection of Al3+ as soon as possible.


Asunto(s)
Aluminio , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Aluminio/química , Celulosa/química , Flavonoles
18.
Int J Biol Macromol ; 262(Pt 1): 130066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340911

RESUMEN

Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.


Asunto(s)
Celulosa , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Espectroscopía Infrarroja por Transformada de Fourier , Celulosa/química , Cumarinas/química , Concentración de Iones de Hidrógeno
19.
J Hazard Mater ; 480: 135975, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39342854

RESUMEN

Sulfur dioxide (SO2) has a wide range of applications in food additives and industrial production, and it is one of the main substances that form acid rain, causing serious harm to ecosystems and human health. Hence, it is necessary to construct an effective tool to quickly and accurately detect SO2 derivatives in environmental, food, and biological samples. In this study, fluorescent probe NPMQ was built to detect SO2 derivatives from nopinone with the merits of superior water solubility, high sensitivity (12 nM), excellent specificity, large Stokes shift (180 nm), and rapid response time (within 5 s). NPMQ was used to qualitatively and quantitatively detect SO2 derivatives in environmental water, soil and food samples. In addition, an electrospinning film was prepared with the probe NPMQ to image SO2 derivatives, and test strips are capable of rapidly, sensitively, and selectively detecting SO2 derivatives with the naked eye. Moreover, the probe NPMQ was used to visualize endogenous SO2 derivatives in Arabidopsis thaliana under Cd2+ stress. Furthermore, the probe NPMQ was employed to image exogenous and endogenous SO2 derivatives in living Hela, HepG-2 cells, and zebrafish. This study develops an effective tool for monitoring SO2 derivatives in the environmental, food, and biological systems.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124747, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959694

RESUMEN

Hydrazine (N2H4) and bisulfite (HSO3-) detection methods are urgently needed due to its harmful to the human health and environment safety. Herein, we reported a dual-response fluorescence probe EPC, which is capable of sequential detection of N2H4 and HSO3- by two different fluorescence signals. The probe EPC itself showed yellow florescence. In presence of N2H4, probe EPC exhibited an obviously fluorescence change (from yellow to green). However, a new addition product came into being after probe EPC mixed with HSO3-, followed with weak yellow emission. More important, probe EPC exhibited excellent fluorescence response properties for N2H4 and HSO3-, such as high sensitivity (0.182 µM for N2H4, 0.093 µM for HSO3-), rapid response (55 s for N2H4, 45 s for HSO3-), excellent selectivity and anti-interference performance. The sensing mechanisms for N2H4 and HSO3- were proved by 1H NMR and MS spectra. Practical applications were studied. EPC based test paper can be utilized for quantitative detecting N2H4 in actual water samples. And, probe EPC has been successfully applied to recognize N2H4 contaminant in soil samples. Moreover, EPC has great potential to be used to detect HSO3- in real food samples.


Asunto(s)
Colorantes Fluorescentes , Hidrazinas , Espectrometría de Fluorescencia , Sulfitos , Hidrazinas/análisis , Hidrazinas/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Sulfitos/análisis , Imidazoles/química , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA