Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Mol Cell ; 83(21): 3766-3772, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922871

RESUMEN

Building a diverse laboratory that is equitable is critical for the retention of talent and the growth of trainees professionally and personally. Here, we outline several strategies including enhancing understanding of cultural competency and humility, establishing laboratory values, and developing equitable laboratory structures to create an inclusive laboratory environment to enable trainees to achieve their highest success.


Asunto(s)
Diversidad, Equidad e Inclusión , Laboratorios
3.
Circ Res ; 134(11): 1515-1545, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781301

RESUMEN

People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1ß, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.


Asunto(s)
Aterosclerosis , Infecciones por VIH , Inflamación , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Inflamación/inmunología , Animales , Inmunidad Innata
4.
Circ Res ; 134(11): 1581-1606, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781302

RESUMEN

HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Mitocondrias , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/complicaciones , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/virología , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/efectos adversos
5.
Circ Res ; 135(2): 372-396, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963864

RESUMEN

Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Mitocondrias Cardíacas , Humanos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Animales , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Metabolismo Energético , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología
6.
Circ Res ; 134(11): e150-e175, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781298

RESUMEN

HIV type 1 (HIV-1) is the causative agent of AIDS. Since the start of the epidemic, HIV/AIDS has been responsible for ≈40 million deaths. Additionally, an estimated 39 million people are currently infected with the virus. HIV-1 primarily infects immune cells, such as CD4+ (cluster of differentiation 4+) T lymphocytes (T cells), and as a consequence, the number of CD4+ T cells progressively declines in people living with HIV. Within a span of ≈10 years, HIV-1 infection leads to the systemic failure of the immune system and progression to AIDS. Fortunately, potent antiviral therapy effectively controls HIV-1 infection and prevents AIDS-related deaths. The efficacy of the current antiviral therapy regimens has transformed the outcome of HIV/AIDS from a death sentence to a chronic disease with a prolonged lifespan of people living with HIV. However, antiviral therapy is not curative, is challenged by virus resistance, can be toxic, and, most importantly, requires lifelong adherence. Furthermore, the improved lifespan has resulted in an increased incidence of non-AIDS-related morbidities in people living with HIV including cardiovascular diseases, renal disease, liver disease, bone disease, cancer, and neurological conditions. In this review, we summarize the current state of knowledge of the cardiovascular comorbidities associated with HIV-1 infection, with a particular focus on hypertension. We also discuss the potential mechanisms known to drive HIV-1-associated hypertension and the knowledge gaps in our understanding of this comorbid condition. Finally, we suggest several directions of future research to better understand the factors, pathways, and mechanisms underlying HIV-1-associated hypertension in the post-antiviral therapy era.


Asunto(s)
Infecciones por VIH , Hipertensión , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Factores de Riesgo , VIH-1/patogenicidad , Animales
7.
J Cell Physiol ; 239(6): e31270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651687

RESUMEN

Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.


Asunto(s)
Aterosclerosis , Linfocitos B , Infecciones por VIH , Animales , Humanos , Aterosclerosis/inmunología , Aterosclerosis/patología , Aterosclerosis/virología , Linfocitos B/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/virología , Inflamación/inmunología , Inflamación/patología , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Diferenciación Celular
8.
J Cell Physiol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457273

RESUMEN

A popular preprint server, bioRxiv, is important as a tool for increased visibility for life science research. If used properly, however, bioRxiv can also be an important tool for training, as it may expose trainees (degree-seeking students undertaking research or internships directly related to their field of study) to the peer review process. Here, we offer a comprehensive guide to using bioRxiv as a training tool, as well as offer suggestions for improvements in bioRxiv, including confusion that may be caused by bioRxiv articles appearing on PubMed.

9.
J Cell Physiol ; : e31360, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962842

RESUMEN

Junior faculty mentoring committees have important roles in ensuring that faculty thrive and adjust to their new positions and institutions. Here, we describe the purpose, structure, and benefits of junior faculty mentoring committees, which can be a powerful tool for early-career academic investigators in science, technology, engineering, mathematics, and medical (STEMM) fields. There is a paucity of information about what mentoring committees are, how to use them effectively, what areas they should evaluate, and how they can most successfully help junior faculty progress in their careers. This work offers guidance for both junior faculty mentees and mentoring committee members on how to best structure and utilize mentoring committees to promote junior faculty success. A better understanding of the intricacies of the mentoring committee will allow junior faculty members to self-advocate and will equip committee mentors with tools to ensure that junior faculty are successful in thriving in academia.

10.
J Cell Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888084

RESUMEN

In academia, particularly in science, technology, engineering, and mathematics (STEM), writing accountability groups have emerged as an effective technique to enhance writing productivity by offering structure, increasing the commitment to write, and fostering social commitment. The rapid development of technology has introduced a new challenge across STEM fields: technostress, where individuals face heightened stress due to novel applications of technology. To address this, we introduce Technology Accountability Groups (TAGs), a novel form of community support for graduate students and faculty. TAGs are tailored to help individuals navigate technological innovations, alleviate technostress, acquire new skills, motivate, and connect with leaders in the field. This paper presents a framework for establishing, implementing, and sustaining TAGs in STEM.

11.
J Cell Physiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38595027

RESUMEN

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

12.
J Cell Physiol ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462753

RESUMEN

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

13.
J Cell Physiol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770789

RESUMEN

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

14.
Am J Physiol Heart Circ Physiol ; 326(3): H786-H796, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38276949

RESUMEN

Diversity, equity, inclusion, and accessibility (DEIA) efforts are increasingly recognized as critical for the success of academic institutions. These efforts are facilitated mainly through the formation of dedicated DEIA committees. DEIA committees enhance professional development and create a more inclusive environment, which benefits all members of the institution. Although leadership and faculty membership have recognized the importance and necessity of DEIA, the roles of DEIA committees may be more ambiguous. Although leadership and faculty may seek to support DEIA at their institutions, they may not always fully understand the necessity of these committees or how to successfully create a committee, foster and promote its success, and sustain its impact. Thus, here, we offer a background rationale and guide for strategically setting up DEIA committees for success and impact within an academic institution with applicability to scientific societies.


Asunto(s)
Diversidad, Equidad e Inclusión , Liderazgo
15.
Circ Res ; 131(4): 328-344, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862128

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS: We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS: We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1ß transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1ß dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS: These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.


Asunto(s)
Hipertensión , Inflamasomas , Animales , Canales Epiteliales de Sodio/genética , Epítopos , Humanos , Hipertensión/inducido químicamente , Hipertensión/genética , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos
16.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624101

RESUMEN

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Asunto(s)
Mitocondrias , Miocardio , Humanos , Masculino , Ratones , Animales , Mitocondrias/metabolismo , Miocardio/metabolismo , Corazón , Envejecimiento , Transducción de Señal , Proteínas Mitocondriales/metabolismo
17.
Curr Hypertens Rep ; 24(12): 627-637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36136214

RESUMEN

PURPOSE OF REVIEW: In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS: Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Cardiopatías , Hipertensión , Humanos , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , ARN Viral/metabolismo , Hipertensión/complicaciones , SARS-CoV-2 , Obesidad/complicaciones , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Inflamación , Cardiopatías/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 41(4): 1459-1473, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33567869
19.
Prostaglandins Other Lipid Mediat ; 158: 106604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922004

RESUMEN

Adipose tissue contains a complex immune environment and is a central contributor to heightened systemic inflammation in obese persons. Epoxyeicosatrienoic acids (EETs) are lipid signaling molecules that decrease inflammation in obese animals, but their effect on inflammation in humans is unknown. The enzyme soluble epoxide hydrolase (sEH) hydrolyzes EETs to less active diols, and we hypothesized that pharmacologic sEH inhibition would decrease adipose inflammation in obese individuals. We treated obese prediabetic adults with the sEH inhibitor GSK2256294 versus placebo in a crossover design, collected subcutaneous abdominal adipose tissue via lipoaspiration and characterized the tissue T cell profile. Treatment with GSK2256294 decreased the percentage of pro-inflammatory T cells producing interferon-gamma (IFNγ), but not interleukin (IL)-17A, and decreased the amount of secreted tumor necrosis factor-alpha (TNFα). Understanding the contribution of the EET/sEH pathway to inflammation in obesity could lead to new strategies to modulate adipose and systemic inflammation.


Asunto(s)
Epóxido Hidrolasas , Linfocitos T , Tejido Adiposo/metabolismo , Animales , Ciclohexilaminas/metabolismo , Epóxido Hidrolasas/metabolismo , Linfocitos T/metabolismo , Triazinas
20.
AIDS Behav ; 26(8): 2825-2829, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35194699

RESUMEN

Access to care is essential for people with HIV (PWH) but may have been affected during the COVID-19 pandemic. We conducted a retrospective cross-sectional study of adult PWH receiving care in a large southeastern comprehensive care clinic in the United States. Patients in care between January 1, 2017, and July 30, 2020, were included. Race/ethnicity, sex, HIV-1 RNA, CD4 + lymphocyte count were included as baseline covariates. Outcomes included clinic attendance, receipt of HIV-1 RNA PCR testing, and virologic suppression (HIV-1 RNA < 200 copies/mL); outpatient encounters included new patient encounters, follow-up visits, and mental health encounters. Total medical encounters, including telemedicine, decreased by 827 visits (33%) when comparing the second quarters of 2019 and 2020. New patient encounters decreased by 23.5% from 81 to 62 during this period. The second quarter of 2020 saw the lowest number of new patient visits since 2017. HIV-1 RNA testing and the proportion of patients with virologic suppression decreased during the pandemic (p < 0.001 for both). Total mental health encounters, on the other hand, increased by 14% during April-June 2020 compared to April-June 2019. Mental health electronic communications increased by 60% from 312 to 500 during the same period, with a 20% increase in medication refills. The COVID-19 pandemic affected outpatient visits, viral load surveillance, and virologic suppression but led to an increase in mental health encounters in a comprehensive care clinic setting.


Asunto(s)
COVID-19 , Infecciones por VIH , Adulto , COVID-19/epidemiología , Continuidad de la Atención al Paciente , Estudios Transversales , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Humanos , Pandemias , ARN/uso terapéutico , Estudios Retrospectivos , Estados Unidos , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA