Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105495, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006947

RESUMEN

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Colesterol , Pregnenolona , Humanos , Adrenodoxina/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/química , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/aislamiento & purificación , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Cinética , Pregnenolona/química , Pregnenolona/metabolismo , Unión Proteica , Oxidación-Reducción , Estructura Molecular
2.
Biochem Biophys Res Commun ; 571: 60-65, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34303964

RESUMEN

Free fatty acids (FFAs) are a useful feedstock for a range of industrial chemical synthesis applications. However, efficiently converting FFAs to molecules for biofuel and other high-value chemicals requires more efficient and cost-effective catalysts. Cytochrome P450 fatty acid peroxygenases (CYP152) have a unique chemistry that allows use of the peroxide shunt pathway for biochemical conversion of FFAs. Known CYP152s are heat labile, however, requiring characterization of more thermotolerant versions for use in industrial applications. A fatty acid peroxygenase from Bacillus methanolicus (CYP152K6) was shown here to have a higher optimal reaction temperature than OleT (CYP152L1). CYP152K6 was stable up to 50 °C and showed great stability in 3% acetone and dimethylformamide. Stability in solvents helps the enzyme's substrates remain soluble in solution for more efficient catalysis, and heat stability allows enzymes to remain active longer during industrial processes.


Asunto(s)
Bacillus/enzimología , Ácidos Grasos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Temperatura , Acetona/química , Acetona/metabolismo , Dimetilformamida/química , Dimetilformamida/metabolismo , Solventes/química , Solventes/metabolismo
3.
Enzyme Microb Technol ; 145: 109744, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33750536

RESUMEN

Hydrogen peroxide is a versatile oxidant that has use in medical and biotechnology industries. Many enzymes require this oxidant as a reaction mediator in order to undergo their oxygenation chemistries. While there is a reliable method for generating hydrogen peroxide via an anthraquinone cycle, there are several advantages for generating hydrogen in situ. As highlighted in this review, this is particularly beneficial in the case of biocatalysts that require hydrogen peroxide as a reaction mediator because the exogenous addition of hydrogen peroxide can damage their reactive heme centers and render them inactive. In addition, generation of hydrogen peroxide in situ does not dilute the reaction mixture and cause solution parameters to change. The environment would also benefit from a hydrogen peroxide synthesis cycle that does not rely on nonrenewable chemicals obtained from fossil fuels. Generation of hydrogen peroxide in situ for biocatalysis using enzymes, bioelectrocatalyis, photocatalysis, and cold temperature plasmas are addressed. Particular emphasis is given to reaction processes that support high total turnover numbers (TTNs) of the hydrogen peroxide-requiring enzymes. Discussion of innovations in the use of hydrogen peroxide-producing enzyme cascades for antimicrobial activity, wastewater effluent treatment, and biosensors are also included.


Asunto(s)
Hemo , Peróxido de Hidrógeno , Biocatálisis , Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA