Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34042974

RESUMEN

Hovering insects are divided into two categories: 'normal' hoverers that move the wing symmetrically in a horizontal stroke plane, and those with an inclined stroke plane. Normal hoverers have been suggested to support their weight during both downstroke and upstroke, shedding vortex rings each half-stroke. Insects with an inclined stroke plane should, according to theory, produce flight forces only during downstroke, and only generate one set of vortices. The type of hovering is thus linked to the power required to hover. Previous efforts to characterize the wake of hovering insects have used low-resolution experimental techniques or simulated the flow using computational fluid dynamics, and so it remains to be determined whether insect wakes can be represented by any of the suggested models. Here, we used tomographic particle image velocimetry, with a horizontal measurement volume placed below the animals, to show that the wake shed by hovering hawkmoths is best described as a series of bilateral, stacked vortex 'rings'. While the upstroke is aerodynamically active, despite an inclined stroke plane, it produces weaker vortices than the downstroke. In addition, compared with the near wake, the far wake lacks structure and is less concentrated. Both near and far wakes are clearly affected by vortex interactions, suggesting caution is required when interpreting wake topologies. We also estimated induced power (Pind) from downwash velocities in the wake. Standard models predicted a Pind more than double that from our wake measurements. Our results thus question some model assumptions and we propose a reevaluation of the model parameters.


Asunto(s)
Vuelo Animal , Mariposas Nocturnas , Animales , Fenómenos Biomecánicos , Aves , Modelos Biológicos , Alas de Animales
2.
J Exp Biol ; 219(Pt 10): 1572-81, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26994178

RESUMEN

Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag.


Asunto(s)
Cuervos/fisiología , Vuelo Animal/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Peso Corporal/fisiología , Postura/fisiología , Cola (estructura animal)
3.
J R Soc Interface ; 14(134)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28954850

RESUMEN

A flying animal can minimize its energy consumption by choosing an optimal flight speed depending on the task at hand. Choice of flight speed can be predicted by modelling the aerodynamic power required for flight, and this tool has previously been used extensively in bird migration research. For insects, however, it is uncertain whether any of the commonly used power models are useful, as insects often operate in a very different flow regime from vertebrates. To investigate this, we measured aerodynamic power in the wake of two Manduca sexta flying freely in a wind tunnel at 1-3.8 ms-1, using tomographic particle image velocimetry (tomo-PIV). The expended power was similar in magnitude to that predicted by two classic models. However, the most ubiquitously used model, originally intended for vertebrates, failed to predict the sharp increase in power at higher speeds, leading to an overestimate of predicted flight speed during longer flights. In addition to measuring aerodynamic power, the tomo-PIV system yielded a highly detailed visualization of the wake, which proved to be significantly more intricate than could be inferred from previous smoke trail- and two-dimensional-PIV studies.


Asunto(s)
Vuelo Animal/fisiología , Manduca/fisiología , Modelos Biológicos , Animales
4.
Curr Biol ; 26(22): 3066-3070, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-28094028

RESUMEN

The common swift (Apus apus) is adapted to an aerial lifestyle, where food and nest material are captured in the air. Observations have prompted scientists to hypothesize that swifts stay airborne for their entire non-breeding period [1, 2], including migration into sub-Saharan Africa [3-5]. It is mainly juvenile common swifts that occasionally roost in trees or buildings before autumn migration when weather is bad [1, 6]. In contrast, the North American chimney swift (Chaetura pelagica) and Vaux's swift (C. vauxi) regularly settle to roost in places like chimneys and buildings during migration and winter [7, 8]. Observations of common swifts during the winter months are scarce, and roost sites have never been found in sub-Saharan Africa. In the breeding season, non-breeding individuals usually spend the night airborne [9], whereas adult nesting birds roost in the nest [1]. We equipped common swifts with a micro data logger with an accelerometer to record flight activity (years 1-2) and with a light-level sensor for geolocation (year 2). Our data show that swifts are airborne for >99% of the time during their 10-month non-breeding period; some individuals never settled, but occasional events of flight inactivity occurred in most individuals. Apparent flight activity was lower during the daytime than during the nighttime, most likely due to prolonged gliding episodes during the daytime when soaring in thermals. Our data also revealed that twilight ascents, previously observed during the summer [10], occur throughout the year. The results have important implications for understanding physiological adaptations to endure prolonged periods of flight, including the need to sleep while airborne.


Asunto(s)
Aves/fisiología , Vuelo Animal , Rasgos de la Historia de Vida , Acelerometría , Adaptación Fisiológica , África , Animales , Ritmo Circadiano , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA