Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 144(3): 376-88, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295698

RESUMEN

The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked ß-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat. Replacement of the HCF-1(PRO) repeats by a heterologous proteolytic cleavage signal promotes HCF-1 proteolysis but fails to activate HCF-1(C)-subunit M phase functions. These results reveal an unexpected role of OGT in HCF-1 proteolytic maturation and an unforeseen nexus between OGT-directed O-GlcNAcylation and proteolytic maturation in HCF-1 cell-cycle regulation.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Ciclo Celular , Glicosilación , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Humanos , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/metabolismo , Alineación de Secuencia
2.
J Biol Chem ; 293(46): 17754-17768, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30224358

RESUMEN

O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase-protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate-the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc-based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.


Asunto(s)
Endopeptidasas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Endopeptidasas/genética , Glicosilación , Factor C1 de la Célula Huésped/genética , Humanos , Simulación de Dinámica Molecular , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Proteolisis , Estereoisomerismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Uridina Difosfato N-Acetilglucosamina/metabolismo
3.
J Proteome Res ; 16(8): 3092-3101, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28636386

RESUMEN

Mass spectrometry (MS) has become the tool of choice for the large scale identification and quantitation of proteins and their post-translational modifications (PTMs). This development has been enabled by powerful software packages for the automated analysis of MS data. While data on PTMs of thousands of proteins can nowadays be readily obtained, fully deciphering the complexity and combinatorics of modification patterns even on a single protein often remains challenging. Moreover, functional investigation of PTMs on a protein of interest requires validation of the localization and the accurate quantitation of its changes across several conditions, tasks that often still require human evaluation. Software tools for large scale analyses are highly efficient but are rarely conceived for interactive, in-depth exploration of data on individual proteins. We here describe MsViz, a web-based and interactive software tool that supports manual validation of PTMs and their relative quantitation in small- and medium-size experiments. The tool displays sequence coverage information, peptide-spectrum matches, tandem MS spectra and extracted ion chromatograms through a single, highly intuitive interface. We found that MsViz greatly facilitates manual data inspection to validate PTM location and quantitate modified species across multiple samples.


Asunto(s)
Procesamiento Proteico-Postraduccional , Programas Informáticos , Humanos , Estadística como Asunto/métodos , Espectrometría de Masas en Tándem/métodos , Interfaz Usuario-Computador
4.
Appl Microbiol Biotechnol ; 101(10): 4129-4137, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28229206

RESUMEN

Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.


Asunto(s)
Aspergillus oryzae/enzimología , Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Prolina/metabolismo , Angiotensinas/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Bradiquinina/metabolismo , Carboxipeptidasas/genética , Genoma Fúngico , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Pichia/genética , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 111(1): 167-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344304

RESUMEN

Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.


Asunto(s)
Relojes Circadianos , Regulación de la Expresión Génica , Hígado/metabolismo , Plasma/metabolismo , Proteoma , Albúminas/metabolismo , Animales , Ritmo Circadiano , Criptocromos/genética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , alfa 1-Antitripsina/metabolismo
6.
J Proteome Res ; 14(1): 279-91, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25350372

RESUMEN

Among pollutants released into the environment by human activities, residues of pharmaceuticals are an increasing matter of concern because of their potential impact on ecosystems. The aim of this study was to analyze differences of protein expression resulting from acute (2 days) and middle-term (7 days) exposure of aquatic microcrustacean Daphnia pulex to the anticancer drug tamoxifen. Using a liquid chromatography-mass spectrometry shotgun approach, about 4000 proteins could be identified, providing the largest proteomics data set of D. pulex published up to now. Considering both time points and tested concentrations, 189 proteins showed a significant fold change. The identity of regulated proteins suggested a decrease in translation, an increase in protein degradation and changes in carbohydrate and lipid metabolism as the major effects of the drug. Besides these impacted processes, which reflect a general stress response of the organism, some other regulated proteins play a role in Daphnia reproduction. These latter results are in accordance with our previous observations of the impact of tamoxifen on D. pulex reproduction and illustrate the potential of ecotoxicoproteomics to unravel links between xenobiotic effects at the biochemical and organismal levels. Data are available via ProteomeXchange with identifier PXD001257.


Asunto(s)
Daphnia/efectos de los fármacos , Daphnia/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteómica/métodos , Tamoxifeno/toxicidad , Xenobióticos/toxicidad , Animales , Cromatografía Liquida , Daphnia/genética , Ecotoxicología/métodos , Espectrometría de Masas en Tándem , Factores de Tiempo
7.
Mol Cell Proteomics ; 11(11): 1123-39, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843989

RESUMEN

Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.


Asunto(s)
Adhesión Bacteriana/genética , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Mutación/genética , Proteómica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bases de Datos de Proteínas , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genotipo , Hierro/farmacología , Cinética , Lactococcus/efectos de los fármacos , Lactococcus/metabolismo , Proteínas de la Membrana/genética , Viabilidad Microbiana/efectos de los fármacos , Biblioteca de Péptidos , Péptidos/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Tripsina/metabolismo
8.
J Mol Biol ; 435(4): 167933, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36581244

RESUMEN

Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained are often inaccurate. This hampers antibody validation and negatively impacts the reliability of western blot data, resulting worldwide in a considerable waste of reagents and labour. We argue that, to alleviate these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration patterns for approximately 10'000 human proteins in five commonly used cell lines. We applied a robust internal calibration of migration to determine accurate and reproducible molecular weights. This in turn allows merging replicates to increase accuracy, but also enables comparing different cell lines. Mining of the data obtained highlights structural factors that affect migration of distinct classes of proteins. When combined with peptide coverage, the data produced recapitulates known post-translational modifications and differential splicing and can be used to formulate hypotheses on new or poorly known processing events. The full information is freely accessible as a web resource through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this database will be useful to investigators worldwide for troubleshooting western blot experiments, but could also contribute to the characterization of human proteoforms.


Asunto(s)
Bases de Datos de Proteínas , Electroforesis en Gel de Poliacrilamida , Proteínas , Humanos , Línea Celular , Espectrometría de Masas , Proteínas/química , Reproducibilidad de los Resultados , Peso Molecular
9.
Nat Commun ; 14(1): 8446, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158416

RESUMEN

Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality.


Asunto(s)
Antiinfecciosos , Hormigas , Animales , Conducta Social , Hormigas/metabolismo , Hidrocarburos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico
10.
Chembiochem ; 13(6): 837-45, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22416020

RESUMEN

Much research has been dedicated to understanding the molecular basis of UV damage to biomolecules, yet many questions remain regarding the specific pathways involved. Here we describe a genome-mediated mechanism that causes site-specific virus protein cleavage upon UV irradiation. Bacteriophage MS2 was disinfected with 254 nm UV, and protein damage was characterized with ESI- and MALDI-based FT-ICR, Orbitrap, and TOF mass spectroscopy. Top-down mass spectrometry of the products identified the backbone cleavage site as Cys46-Ser47 in the virus capsid protein, a location of viral genome-protein interaction. The presence of viral RNA was essential to inducing backbone cleavage. The similar bacteriophage GA did not exhibit site-specific protein cleavage. Based on the major protein fragments identified by accurate mass analysis, a cleavage mechanism is proposed by radical formation. The mechanism involves initial oxidation of the Cys46 side chain followed by hydrogen atom abstraction from Ser47 C(α). Computational protein QM/MM studies confirmed the initial steps of the radical mechanism. Collectively, this study describes a rare incidence of genome-induced protein cleavage without the addition of sensitizers.


Asunto(s)
Genoma Viral/efectos de la radiación , Levivirus/metabolismo , Levivirus/efectos de la radiación , Proteínas Virales/metabolismo , Proteínas Virales/efectos de la radiación , Levivirus/genética , Espectrometría de Masas , Rayos Ultravioleta , Proteínas Virales/genética
11.
Mol Cell Proteomics ; 9(3): 579-92, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19955080

RESUMEN

Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose concentration and therefore to pathological conditions derived from hyperglycemia (>11 mm glucose) such as diabetes mellitus or renal failure. An approach for qualitative and quantitative analysis of glycated proteins is here proposed to achieve the three information levels for their complete characterization. These are: 1) identification of glycated proteins, 2) elucidation of sugar attachment sites, and 3) quantitative analysis to compare glycemic states. Qualitative analysis was carried out by tandem mass spectrometry after endoproteinase Glu-C digestion and boronate affinity chromatography for isolation of glycated peptides. For this purpose, two MS operational modes were used: higher energy collisional dissociation-MS2 and CID-MS3 by neutral loss scan monitoring of two selective neutral losses (162.05 and 84.04 Da for the glucose cleavage and an intermediate rearrangement of the glucose moiety). On the other hand, quantitative analysis was based on labeling of proteins with [(13)C(6)]glucose incubation to evaluate the native glycated proteins labeled with [(12)C(6)]glucose. As glycation is chemoselective, it is exclusively occurring in potential targets for in vivo modifications. This approach, named glycation isotopic labeling, enabled differentiation of glycated peptides labeled with both isotopic forms resulting from enzymatic digestion by mass spectrometry (6-Da mass shift/glycation site). The strategy was then applied to a reference plasma sample, revealing the detection of 50 glycated proteins and 161 sugar attachment positions with identification of preferential glycation sites for each protein. A predictive approach was also tested to detect potential glycation sites under high glucose concentration.


Asunto(s)
Proteínas Sanguíneas/análisis , Carbohidratos/análisis , Marcaje Isotópico/métodos , Espectrometría de Masas en Tándem/métodos , Sitios de Unión , Proteínas Sanguíneas/química , Carbohidratos/química , Isótopos de Carbono/análisis , Glicosilación , Humanos , Péptidos/análisis , Péptidos/química
12.
Sci Adv ; 8(19): eabl8834, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559678

RESUMEN

Boundaries in animal genomes delimit contact domains with enhanced internal contact frequencies and have debated functions in limiting regulatory cross-talk between domains and guiding enhancers to target promoters. Most mammalian boundaries form by stalling of chromosomal loop-extruding cohesin by CTCF, but most Drosophila boundaries form CTCF independently. However, how CTCF-independent boundaries form and function remains largely unexplored. Here, we assess genome folding and developmental gene expression in fly embryos lacking the ubiquitous boundary-associated factor Cp190. We find that sequence-specific DNA binding proteins such as CTCF and Su(Hw) directly interact with and recruit Cp190 to form most promoter-distal boundaries. Cp190 is essential for early development and prevents regulatory cross-talk between specific gene loci that pattern the embryo. Cp190 was, in contrast, dispensable for long-range enhancer-promoter communication at tested loci. Cp190 is thus currently the major player in fly boundary formation and function, revealing that diverse mechanisms evolved to partition genomes into independent regulatory domains.

13.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35452600

RESUMEN

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Asunto(s)
Células T de Memoria , Transportadores de Ácidos Monocarboxílicos , Lactatos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
14.
Proteomics ; 11(22): 4422-33, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21919205

RESUMEN

The dermatophytes are a group of closely related fungi which are responsible for the great majority of superficial mycoses in humans and animals. Among various potential virulence factors, their secreted proteolytic activity attracts a lot of attention. Most dermatophyte-secreted proteases which have so far been isolated in vitro are neutral or alkaline enzymes. However, inspection of the recently decoded dermatophyte genomes revealed many other hypothetical secreted proteases, in particular acidic proteases similar to those characterized in Aspergillus spp. The validation of such genome predictions instigated the present study on two dermatophyte species, Microsporum canis and Arthroderma benhamiae. Both fungi were found to grow well in a protein medium at acidic pH, accompanied by extracellular proteolysis. Shotgun MS analysis of secreted protein revealed fundamentally different protease profiles during fungal growth in acidic versus neutral pH conditions. Most notably, novel dermatophyte-secreted proteases were identified at acidic pH such as pepsins, sedolisins and acidic carboxypeptidases. Therefore, our results not only support genome predictions, but demonstrate for the first time the secretion of acidic proteases by dermatophytes. Our findings also suggest the existence of different pathways of protein degradation into amino acids and short peptides in these highly specialized pathogenic fungi.


Asunto(s)
Arthrodermataceae/enzimología , Microsporum/enzimología , Péptido Hidrolasas/química , Arthrodermataceae/fisiología , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Electroforesis en Gel de Poliacrilamida , Espacio Extracelular , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Microsporum/fisiología , Pepstatinas , Péptido Hidrolasas/metabolismo , Mapeo Peptídico , Proteolisis , Proteínas de Soja
15.
J Proteome Res ; 10(2): 800-11, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21166477

RESUMEN

In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.


Asunto(s)
Cromatografía en Gel/métodos , Fragmentos de Péptidos/análisis , Fosfoproteínas/química , Proteómica/métodos , Tripsina/química , Línea Celular Tumoral , Simulación por Computador , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Mapeo Peptídico , Fosfoproteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de Proteína , Tripsina/metabolismo
16.
Microbiology (Reading) ; 157(Pt 5): 1541-1550, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21349972

RESUMEN

In an acidic protein medium Aspergillus fumigatus secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to Aspergillus niger aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in A. fumigatus wild-type D141 and in a pepΔ mutant. Either A. fumigatus Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to A. fumigatus alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in Pichia pastoris showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to A. niger aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non-Aspergillus fungi.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/crecimiento & desarrollo , Medios de Cultivo/química , Proteínas Fúngicas/metabolismo , Péptido Hidrolasas/metabolismo , Ácidos/metabolismo , Secuencia de Aminoácidos , Proteasas de Ácido Aspártico/química , Proteasas de Ácido Aspártico/genética , Aspergillus fumigatus/metabolismo , Medios de Cultivo/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Glutámico/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Transporte de Proteínas
17.
Talanta ; 223(Pt 1): 121617, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33303132

RESUMEN

We present a new workflow for the LC-MS determination of native peptides in plasma at picomolar levels. Collected whole blood was quickly diluted with an ice-cold solution in order to stop protease activity. Diluted plasma samples were extracted by protein denaturation followed by solid-phase-extraction with a polymeric stationary phase that removed most proteins and lipids. Using a specific LC-MS setup with 3 pumps, 240 µL of extracts were injected without drying-reconstitution, a step known to cause peptide losses. After an 18-fold dilution on-line, peptides were trapped on a 1 × 10 mm C8 column, back-flushed and resolved on a 0.3 × 100 mm C18 column. Extract reproducibility, robustness (column clogging), extraction yields, matrix effects, calibration curves and limits of detection were evaluated with plasma extracts and spiked-in standards. The sensitivity and applicability of 3 electrospray sources were evaluated at capillary flow rates (10 µL/min). We show that ionization sources must have a spray angle with the MS orifice when "real" extracts are injected and that a multinozzle emitter can improve very significantly peptide detection. Finally, using our workflow, we have performed a peptidomics study on dried-blood-spots collected over 65 h in a healthy volunteer and discovered 5 fragments (2.9-3.8 KDa) of the protein statherin showing circadian oscillations. This is the first time that statherin is observed in blood where its role clearly deserves further investigations. Our peptidomic protocol shows low picomolar limits of detection and can be readily applied with or without minor modifications for most peptide determinations in various biomatrices.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Humanos , Lípidos , Reproducibilidad de los Resultados , Flujo de Trabajo
18.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34706263

RESUMEN

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Asunto(s)
Arabidopsis/metabolismo , Endospermo/metabolismo , Péptidos/metabolismo , Plantones/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Germinación , Plantas , Semillas/metabolismo
19.
J Proteome Res ; 9(7): 3511-9, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20486678

RESUMEN

Aspergillus fumigatus grows well at neutral and acidic pH in a medium containing protein as the sole nitrogen source by secreting two different sets of proteases. Neutral pH favors the secretion of neutral and alkaline endoproteases, leucine aminopeptidases (Laps) which are nonspecific monoaminopeptidases, and an X-prolyl dipeptidase (DppIV). Acidic pH environment promotes the secretion of an aspartic endoprotease of pepsin family (Pep1) and tripeptidyl-peptidases of the sedolisin family (SedB and SedD). A novel prolyl peptidase, AfuS28, was found to be secreted in both alkaline and acidic conditions. In previous studies, Laps were shown to degrade peptides from their N-terminus until an X-Pro sequence acts as a stop signal. X-Pro sequences can be then removed by DppIV, which allows Laps access to the following residues. We have shown that at acidic pH Seds degrade large peptides from their N-terminus into tripeptides until Pro in P1 or P'1 position acts as a stop for these exopeptidases. However, X-X-Pro and X-X-X-Pro sequences can be removed by AfuS28 thus allowing Seds further sequential proteolysis. In conclusion, both alkaline and acidic sets of proteases contain exoprotease activity capable of cleaving after proline residues that cannot be removed during sequential digestion by nonspecific exopeptidases.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/metabolismo , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Aspergillus/genética , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/genética
20.
Mol Cell Proteomics ; 7(5): 927-37, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18165257

RESUMEN

Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it.


Asunto(s)
Aminoácidos/metabolismo , Marcaje Isotópico/métodos , Proteínas/análisis , Proteómica/métodos , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Línea Celular Tumoral , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Electroforesis en Gel Bidimensional , Humanos , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Péptidos/análisis , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA