Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 506(7486): 89-92, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24362564

RESUMEN

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Asunto(s)
Evolución Biológica , Clima Frío , Ecosistema , Congelación , Magnoliopsida/anatomía & histología , Magnoliopsida/fisiología , Xilema/anatomía & histología , Funciones de Verosimilitud , Filogeografía , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Semillas/fisiología , Factores de Tiempo , Madera/anatomía & histología , Madera/fisiología , Xilema/fisiología
4.
PLoS One ; 8(4): e60789, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593312

RESUMEN

Most research on boundaries between vegetation types emphasizes the contrasts and similarities between conditions on either side of a boundary, but does not compare boundary to non-boundary vegetation. That is, most previous studies lack suitable controls, and may therefore overlook underlying aspects of landscape variability at a regional scale and underestimate the effects that the vegetation itself has on the soil. We compared 25 soil chemistry variables in rainforest, sclerophyll vegetation and across rainforest-sclerophyll boundaries in north-eastern Queensland, Australia. Like previous studies, we did find some contrasts in soil chemistry across vegetation boundaries. However we did not find greater variation in chemical parameters across boundary transects than in transects set in either rainforest or woodland. We also found that soil on both sides of the boundary is more similar to "rainforest soil" than to "woodland soil". Transects in wet sclerophyll forests with increasing degrees of rainforest invasion showed that as rainforest invades wet sclerophyll forest, the soil beneath wet sclerophyll forest becomes increasingly similar to rainforest soil. Our results have implications for understanding regional vegetation dynamics. Considering soil-vegetation feedbacks and the differences between soil at boundaries and in non-boundary sites may hold clues to some of the processes that occur across and between vegetation types in a wide range of ecosystems. Finally, we suggest that including appropriate controls should become standard practice for studies of vegetation boundaries and edge effects worldwide.


Asunto(s)
Suelo , Clima Tropical
5.
Nat Commun ; 4: 1879, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695673

RESUMEN

Rates of molecular evolution have a central role in our understanding of many aspects of species' biology. However, the causes of variation in rates of molecular evolution remain poorly understood, particularly in plants. Here we show that height accounts for about one-fifth of the among-lineage rate variation in the chloroplast and nuclear genomes of plants. This relationship holds across 138 families of flowering plants, and when accounting for variation in species richness, temperature, ultraviolet radiation, latitude and growth form. Our observations can be explained by a link between height and rates of genome copying in plants, and we propose a mechanistic hypothesis to account for this-the 'rate of mitosis' hypothesis. This hypothesis has the potential to explain many disparate observations about rates of molecular evolution across the tree of life. Our results have implications for understanding the evolutionary history and future of plant lineages in a changing world.


Asunto(s)
Evolución Molecular , Plantas/anatomía & histología , Plantas/genética , Sustitución de Aminoácidos/genética , Núcleo Celular/genética , Cloroplastos/genética , Bases de Datos Genéticas , Análisis de los Mínimos Cuadrados , Magnoliopsida/anatomía & histología , Magnoliopsida/genética , Filogenia , ARN Ribosómico/genética , Análisis de Regresión , Madera/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA