Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 149(1): 146-58, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464327

RESUMEN

Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.


Asunto(s)
Colon/metabolismo , Genes Supresores de Tumor , Intestino Delgado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Colon/citología , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Humanos , Neoplasias Intestinales/patología , Intestino Delgado/citología , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
2.
Carcinogenesis ; 40(9): 1086-1098, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30689807

RESUMEN

Blood vessel epicardial substance (BVES, otherwise known as POPDC1) is an integral membrane protein known to regulate tight junction formation and epithelial-mesenchymal transition. BVES is underexpressed in a number of malignancies, including colorectal cancer. BVES loss leads to activation of the Wnt pathway, suggesting that decreased BVES expression functionally contributes to tumorigenesis. However, the mechanism by which BVES modulates Wnt signaling is unknown. Here, we confirm that BVES loss increases ß-catenin protein levels, leads to Wnt pathway activation in a ligand-independent fashion and coordinates with Wnt ligand to further increase Wnt signaling. We show that BVES loss increases levels and activation of the Wnt co-receptor, LRP6, in cell lines, murine adenoma tumoroids and human-derived colonoids. We also demonstrate that BVES interacts with LRP6. Finally, murine tumor modeling using a Wnt-driven genetic model and a chemically induced model of colorectal carcinogenesis demonstrate that BVES loss increases tumor multiplicity and dysplasia. Together, these results implicate BVES as an inhibitor of Wnt signaling, provide one of the first examples of a tight junction-associated protein regulating Wnt receptor levels, and expand the number of putative molecular targets for therapeutic intervention in colorectal cancer.

3.
Gut ; 66(5): 852-862, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28389570

RESUMEN

OBJECTIVE: Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. DESIGN: We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves-/- and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. RESULTS: BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves-/- mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves-/- tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. CONCLUSION: Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.


Asunto(s)
Carcinogénesis/genética , Moléculas de Adhesión Celular/genética , Colitis Ulcerosa/metabolismo , Neoplasias del Colon/metabolismo , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Biomarcadores de Tumor/genética , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colitis Ulcerosa/genética , Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Metilación de ADN , Sulfato de Dextran , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/metabolismo , Vía de Señalización Wnt
4.
Clin Gastroenterol Hepatol ; 15(7): 1087-1094.e2, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28215615

RESUMEN

BACKGROUND & AIMS: Despite complete suppression of viral DNA with antiviral agents, in some patients with chronic hepatitis B (CHB), serum levels of alanine aminotransferase (ALT) do not normalize. We investigated factors associated with persistent increases in ALT level in patients with CHB given long-term tenofovir disoproxil fumarate. METHODS: We analyzed data from 471 hepatitis B e antigen (HBeAg)-positive and HBeAg-negative patients with CHB participating in 2 phase 3 trials. We identified patients with an increased level of ALT (above the upper limit of normal range) after 5 years (240 weeks) of tenofovir disoproxil fumarate therapy. We analyzed findings from liver biopsy specimens collected from 467 patients (99%) at baseline and 339 patients (72%) at year 5 of treatment; biopsy specimens were evaluated by an independent pathologist. We performed stepwise, forward, multivariate regression analyses of specified baseline characteristics and on-treatment response parameters to identify factors associated with persistent increases in ALT level. RESULTS: Of the 471 patients, 87 (18%) still had an increased ALT level at year 5 of treatment. Factors associated significantly with a persistent increase in ALT level were a steatosis score of 5% or greater (grade 1 or more) at baseline (odds ratio [OR], 2.236; 95% confidence interval [CI], 1.031-4.852; P = .042) and at year 5 (OR, 3.392; 95% CI, 1.560 ≥ 7.375; P = .002), HBeAg seropositivity at baseline (OR, 3.297; 95% CI, 1.653-6.576; P < .001), and age 40 years or older (OR, 2.099; 95% CI, 1.014-4.342; P = .046). Of the 42 HBeAg-positive patients with steatosis at baseline, 21 (50%) had an increased ALT level at year 5 of treatment. Patients with persistent increases in ALT level were more likely to have an increase in steatosis at year 5 than those with a normal ALT level. CONCLUSIONS: HBeAg seropositivity and hepatic steatosis contribute to persistent increases in ALT level in patients with CHB receiving suppressive antiviral treatment. ClinicalTrials.gov registration numbers: NCT00117676 and NCT00116805.


Asunto(s)
Alanina Transaminasa/sangre , Antivirales/administración & dosificación , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/patología , Tenofovir/administración & dosificación , Administración Oral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Ensayos Clínicos Fase III como Asunto , Hígado Graso/patología , Femenino , Antígenos e de la Hepatitis B/sangre , Histocitoquímica , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Carcinogenesis ; 37(12): 1161-1169, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27655834

RESUMEN

Esophageal adenocarcinoma (EA) is one of the fastest rising tumors in the USA. The major risk factor for EA is gastroesophageal reflux disease (GERD). During GERD, esophageal cells are exposed to refluxate which contains gastric acid frequently mixed with duodenal bile. This may lead to mucosal injury and Barrett's metaplasia (BE) that are important factors contributing to development of EA. In this study, we investigated DNA damage in BE cells exposed to acidic bile salts and explored for potential protective strategies. Exposure of BE cells to acidic bile salts led to significant DNA damage, which in turn, was due to generation of reactive oxygen species (ROS). We found that acidic bile salts induce a rapid increase in superoxide radicals and hydrogen peroxide, which were determined using electron paramagnetic resonance spectroscopy and Amplex Red assay. Analyzing a panel of natural antioxidants, we identified apocynin to be the most effective in protecting esophageal cells from DNA damage induced by acidic bile salts. Mechanistic analyses showed that apocynin inhibited ROS generation and increases the DNA repair capacity of BE cells. We identified BRCA1 and p73 proteins as apocynin targets. Downregulation of p73 inhibited the protective effect of apocynin. Taken together, our results suggest potential application of natural compounds such as apocynin for prevention of reflux-induced DNA damage and GERD-associated tumorigenesis.


Asunto(s)
Acetofenonas/administración & dosificación , Adenocarcinoma/metabolismo , Esófago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Reflujo Gastroesofágico/metabolismo , Ácidos/efectos adversos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/etiología , Adenocarcinoma/patología , Antioxidantes/administración & dosificación , Proteína BRCA1/biosíntesis , Esófago de Barrett/tratamiento farmacológico , Esófago de Barrett/etiología , Esófago de Barrett/patología , Ácidos y Sales Biliares/efectos adversos , Ácidos y Sales Biliares/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/etiología , Neoplasias Esofágicas/patología , Ácido Gástrico/metabolismo , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo
6.
FASEB J ; 29(3): 786-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25398765

RESUMEN

Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Linaje de la Célula , Células Epiteliales/citología , Intestinos/citología , Inhibidores de Proteasas/farmacología , Receptores Notch/metabolismo , Proteínas Represoras/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Ratones Noqueados , Células de Paneth/citología , Células de Paneth/efectos de los fármacos , Células de Paneth/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Immunol ; 192(3): 1013-23, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24391216

RESUMEN

Macrophages regulate innate immunity to maintain intestinal homeostasis and play pathological roles in intestinal inflammation. Activation of the epidermal growth factor receptor (EGFR) promotes cellular proliferation, differentiation, survival, and wound closure in several cell types. However, the impact of EGFR in macrophages remains unclear. This study was to investigate whether EGFR activation in macrophages regulates cytokine production and intestinal inflammation. We found that EGFR was activated in colonic macrophages in mice with dextran sulfate sodium (DSS)-induced colitis and in patients with ulcerative colitis. DSS-induced acute colitis was ameliorated, and recovery from colitis was promoted in Egfr(fl/fl)LysM-Cre mice with myeloid cell-specific deletion of EGFR, compared with LysM-Cre mice. DSS treatment increased IL-10 and TNF levels during the acute phase of colitis, and increased IL-10 but reduced TNF levels during the recovery phase in Egfr(fl/fl)LysM-Cre mice. An anti-IL-10 neutralizing Ab abolished these effects of macrophage-specific EGFR deletion on DSS-induced colitis in Egfr(fl/fl)LysM-Cre mice. LPS stimulated EGFR activation and inhibition of EGFR kinase activity enhanced LPS-stimulated NF-κB activation in RAW 264.7 macrophages. Furthermore, induction of IL-10 production by EGFR kinase-blocked RAW 264.7 cells, in response to LPS plus IFN-γ, correlated with decreased TNF production. Thus, although selective deletion of EGFR in macrophages leads to increases in both pro- and anti-inflammatory cytokines in response to inflammatory stimuli, the increase in the IL-10 level plays a role in suppressing proinflammatory cytokine production, resulting in protection of mice from intestinal inflammation. These results reveal an integrated response of macrophages regulated by EGFR in intestinal inflammatory disorders.


Asunto(s)
Colitis/inmunología , Citocinas/biosíntesis , Receptores ErbB/fisiología , Macrófagos/inmunología , Adolescente , Adulto , Anciano , Animales , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/inmunología , Colon/patología , Colon/fisiología , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Citocinas/genética , Sulfato de Dextran/toxicidad , Receptores ErbB/deficiencia , Receptores ErbB/genética , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata , Inflamación , Interferón gamma/farmacología , Interleucina-10/antagonistas & inhibidores , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Mieloides/metabolismo , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Quinazolinas/farmacología , Regeneración , Transducción de Señal/inmunología , Bazo/inmunología , Bazo/patología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Tirfostinos/farmacología , Adulto Joven
8.
Gut ; 63(4): 622-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23766441

RESUMEN

OBJECTIVE: Claudin-1 expression is increased and dysregulated in colorectal cancer and causally associates with the dedifferentiation of colonic epithelial cells, cancer progression and metastasis. Here, we have sought to determine the role claudin-1 plays in the regulation of intestinal epithelial homeostasis. DESIGN: We have used a novel villin-claudin-1 transgenic (Cl-1Tg) mouse as model (with intestinal claudin-1 overexpression). The effect of claudin-1 expression upon colonic epithelial differentiation, lineage commitment and Notch-signalling was determined using immunohistochemical, immunoblot and real-time PCR analysis. The frequently used mouse model of dextran sodium sulfate (DSS)-colitis was used to model inflammation, injury and repair. RESULTS: In Cl-1Tg mice, normal colonocyte differentiation programme was disrupted and goblet cell number and mucin-2 (muc-2) expressions were significantly downregulated while Notch- and ERK1/2-signalling were upregulated, compared with the wild type-littermates. Cl-1Tg mice were also susceptible to colonic inflammation and demonstrated impaired recovery and hyperproliferation following the DSS-colitis. Our data further show that claudin-1 regulates Notch-signalling through the regulation of matrix metalloproteinase-9 (MMP-9) and p-ERK signalling to regulate proliferation and differentiation. CONCLUSIONS: Claudin-1 helps regulate intestinal epithelial homeostasis through the regulation of Notch-signalling. An upregulated claudin-1 expression induces MMP-9 and p-ERK signalling to activate Notch-signalling, which in turn inhibits the goblet cell differentiation. Decreased goblet cell number decreases muc-2 expression and thus enhances susceptibility to mucosal inflammation. Claudin-1 expression also induces colonic epithelial proliferation in a Notch-dependent manner. Our findings may help understand the role of claudin-1 in the regulation of inflammatory bowel diseases and CRC.


Asunto(s)
Claudina-1/fisiología , Colon/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Colitis/inducido químicamente , Colitis/fisiopatología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Homeostasis/fisiología , Mucosa Intestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Mol Cancer ; 13: 167, 2014 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-24997475

RESUMEN

BACKGROUND: The tight junction protein Claudin-1, a claudin family member, has been implicated in several gastro-intestinal pathologies including inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this regard, we have demonstrated that claudin-1 expression in colon cancer cells potentiates their tumorigenic ability while in vivo expression of claudin-1 in the intestinal epithelial cells (IECs) promotes Notch-activation, inhibits goblet cell differentiation and renders susceptibility to mucosal inflammation. Notably, a key role of inflammation in colon cancer progression is being appreciated. Therefore, we examined whether inflammation plays an important role in claudin-1-dependent upregulation of colon carcinogenesis. METHODS: APCmin mice were crossed with Villin-claudin-1 transgenic mice to generate APC-Cldn1 mice. H&E stained colon tissues were assessed for tumor number, size and histological grade. Additionally, microarray and qPCR analyses of colonic tumors were performed to assess molecular changes due to claudin-1 expression. APC-Cldn1 and APCmin controls were assessed for colonic permeability via rectal administration of FITC-dextran, and bacterial translocation via qPCR analysis of 16S rDNA. RESULTS: Claudin-1 overexpression in APCmin mice significantly increased (~4-fold) colonic tumor growth and size, and decreased survival. Furthermore, transcriptome analysis supported upregulated proliferation, and increased Wnt and Notch-signaling in APC-Cldn1 mice. APC-Cldn1 mice also demonstrated inhibition of mucosal defense genes while expression of pro-inflammatory genes was sharply upregulated, especially the IL-23/IL-17 signaling. We predict that increased Notch/Wnt-signaling underlie the early onset of adenoma formation in APC-Cldn1 mice. An increase in mucosal permeability due to the adenomas and the inherent barrier defect in these mice further facilitate bacterial translocation into the mucosa to induce inflammation, which in turn promote the tumorigenesis. CONCLUSION: Taken together, these results confirm the role of claudin-1 as a promoter of colon tumorigenesis and further identify the role of the dysregulated antigen-tumor interaction and inflammation in claudin-1-dependent upregulation of colon tumorigenesis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Transformación Celular Neoplásica/genética , Claudina-1/biosíntesis , Neoplasias del Colon/genética , Poliposis Adenomatosa del Colon/patología , Animales , Claudina-1/genética , Neoplasias del Colon/patología , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad p19 de la Interleucina-23/biosíntesis , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Intestinos/patología , Ratones , Mucina 2/biosíntesis
10.
Mod Pathol ; 27(9): 1281-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24434897

RESUMEN

Although tumor deposits have been associated with poor prognosis in colorectal carcinoma, the prevalence and clinical significance of tumor deposits in rectal adenocarcinoma following neoadjuvant chemoradiation are relatively unexplored. The aims of this study are to assess the clinical significance of tumor deposits in rectal adenocarcinoma patients, including those receiving neoadjuvant therapy. Pathology slides and medical records from 205 consecutive patients who underwent resection for rectal adenocarcinoma between 1990 and 2010 at a single tertiary care center were reviewed. Patients with tumor deposits had higher tumor grade (P=0.006) and worse tumor stage (P<0.001) at presentation than patients without tumor deposits. Among 110 patients who underwent neoadjuvant chemoradiation, tumor deposits were associated with higher rates of lymph node involvement (P=0.035) and distant metastases (P=0.006), and decreased survival (P=0.027). These patients had a trend toward lower treatment response scores (P=0.285) and higher local recurrence (P=0.092). Of 52 patients with tumor deposits, those who underwent neoadjuvant chemoradiation had significantly worse pretreatment stage by endoscopic ultrasound (P<0.001) but interestingly had significantly lower rates of lymphovascular invasion on resection (P<0.001) compared with those who had not received neoadjuvant chemoradiation. Despite treatment with neoadjuvant chemoradiation, tumor deposits were present in over one-fifth of rectal adenocarcinoma patients. Overall, the outcome of patients with tumor deposits in treated and untreated patients were similar, however the association of tumor deposits with deeply invasive tumors and less tumor regression when comparing with treated patients without tumor deposits raises the possibility that these tumors could have a more aggressive biology, possibly explaining the association of tumor deposits with higher rates of recurrence and lower survival after neoadjuvant chemoradiation. Overall, tumor deposits appear to be a poor prognostic marker among rectal adenocarcinoma patients following neoadjuvant chemoradiation and may identify a subset of patients who require aggressive adjuvant therapy to prevent recurrence.


Asunto(s)
Adenocarcinoma/patología , Neoplasias del Recto/patología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Anciano , Quimioradioterapia , Femenino , Estudios de Seguimiento , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Estadificación de Neoplasias , Pronóstico , Neoplasias del Recto/mortalidad , Neoplasias del Recto/terapia , Estudios Retrospectivos , Tasa de Supervivencia
11.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464229

RESUMEN

Background: Immune checkpoint blockade (ICB) therapies are an important treatment for patients with advanced cancers; however only a subset of patients with certain types of cancer achieves durable remissions. Cancer vaccines are an attractive strategy to boost patient immune responses, but less is known about whether and how immunization can induce long-term tumor immune reprogramming and arrest cancer progression. We developed a clinically-relevant genetic cancer mouse model in which hepatocytes sporadically undergo oncogenic transformation. We compared how tumor-specific CD8 T cells (TST) differentiate in mice with early sporadic lesions as compared to late lesions and tested how immunotherapeutic strategies, including vaccination and ICB, reprogram TST and impact liver cancer progression. Methods: Mice with a germline floxed allele of the SV40 large T antigen (TAG) undergo spontaneous recombination and activation of the TAG oncogene, leading to rare early pre-cancerous lesions that inevitably progress to established liver cancer. We assessed the immunophenotype and function of TAG-specific CD8 T cells in mice with early and late liver lesions. We vaccinated mice, either alone or in combination with ICB, to test whether these immunotherapeutic interventions could stop liver cancer progression. Results: In mice with early lesions, a subset of TST were PD1 + TCF1 + TOX - and could produce IFNγ, while TST present in mice with late liver cancers were PD1 + TCF1 lo/- TOX + and unable to make effector cytokines. Strikingly, vaccination with attenuated TAG epitope-expressing Listeria monocytogenes (LM TAG ) blocked liver cancer development and led to a population of TST that were TCF1 + TOX - TST and polyfunctional cytokine producers. In contrast, ICB administration did not slow cancer progression or improve LM TAG vaccine efficacy. Conclusion: Vaccination, but not ICB, generated a population of progenitor TST and halted cancer progression in a clinically relevant model of sporadic liver cancer. In patients with early cancers or at high-risk of cancer recurrence, immunization may be the most effective strategy. What is already known on this topic: Immunotherapy, including immune checkpoint blockade and cancer vaccines, fails to induce long-term remissions in most patients with cancer. What this study adds: Hosts with early lesions but not hosts with advanced cancer retain a progenitor TCF1+ TST population. This population can be reprogrammed and therapeutically exploited by vaccination, but not ICB, to block tumor progression. How this study might affect research practice or policy: For people at high-risk of cancer progression, vaccination administered when a responsive progenitor TST population is present may be the optimal immunotherapy to induce long-lasting progression-free survival.

12.
Res Sq ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257990

RESUMEN

Background: Robust evidence suggests that the aberrant expression of α defensin 5 protein (DEFA5) in colon inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis, can be exploited as a reliable diagnostic biomarker to differential diagnosis of Crohn's colitis (CC) from Ulcerative colitis (UC) in otherwise indeterminate colitis (IC). We evaluated the specificity of the commercially available anti-DEFA5 antibodies and showed further validation of their appropriateness for a given application is required. Methods: We established two mouse monoclonal DEFA5 antibody clones 1A8 and 4F5 by immunizing the mice with purified recombinant protein and validated the specificity, selectivity and cross reactivity in recognizing the endogenous and recombinant DEFA5 protein, especially for Immunohistochemistry, Western blot, Immunoprecipitation, or enzyme-linked immunosorbent assay. Results: Clones 1A8 and 4F5 recognized effectively the endogenous DEFA5 in active human diverticulitis (DV), UC, CC or IC disease samples, including transiently transfected HEK293T cells expressing DEFA5 with high degree of specificity and minimal non-confounding cross reactivity. Conclusions: 1A8 and 4F5 clones are worth studying in larger IBD cohorts to fully address whether DEFA5 expression may be used as a diagnostic biomarker to discrimination of the diagnosis of UC from CC or IC into authentic CC or UC or a colitis with different pathological characteristics.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39268202

RESUMEN

Understanding the way cells communicate, co-locate, and interrelate is essential to understanding human physiology. Hematoxylin and eosin (H&E) staining is ubiquitously available both for clinical studies and research. The Colon Nucleus Identification and Classification (CoNIC) Challenge has recently innovated on robust artificial intelligence labeling of six cell types on H&E stains of the colon. However, this is a very small fraction of the number of potential cell classification types. Specifically, the CoNIC Challenge is unable to classify epithelial subtypes (progenitor, endocrine, goblet), lymphocyte subtypes (B, helper T, cytotoxic T), or connective subtypes (fibroblasts, stromal). In this paper, we propose to use inter-modality learning to label previously un-labelable cell types on virtual H&E. We leveraged multiplexed immunofluorescence (MxIF) histology imaging to identify 14 subclasses of cell types. We performed style transfer to synthesize virtual H&E from MxIF and transferred the higher density labels from MxIF to these virtual H&E images. We then evaluated the efficacy of learning in this approach. We identified helper T and progenitor nuclei with positive predictive values of 0.34 ± 0.15 (prevalence 0.03 ± 0.01) and 0.47 ± 0.1 (prevalence 0.07 ± 0.02) respectively on virtual H&E. This approach represents a promising step towards automating annotation in digital pathology.

15.
J Biol Chem ; 287(47): 39850-8, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23033483

RESUMEN

Expression of the ErbB4 tyrosine kinase is elevated in colonic epithelial cells during inflammatory bowel disease, whereas ErbB4 overexpression in cultured colonocytes blocks TNF-induced apoptosis in a ligand-dependent manner. Together, these observations suggest that ErbB4 induction may be a protective response. However, the effects of ErbB4 signaling in the colonic epithelium in vivo are not known. Furthermore, previous work on ErbB4 used ligands shared with other receptors, raising the question of whether the observed responses are explicitly due to ErbB4. In this study, we used the ErbB4-specific ligand neuregulin-4 (NRG4) to activate ErbB4 and define its role in colonocyte biology. NRG4 treatment, either in cultured cells or in mice, blocked colonic epithelial apoptosis induced by TNF and IFN-γ. It was also protective in a murine experimental colitis model. NRG4 stimulated phosphorylation of ErbB4 but not other ErbB receptors, indicating that this is a specific response. Furthermore, in contrast to related ligands, NRG4 enhanced cell survival but not proliferation or migration, and stimulated phosphorylation of the anti-apoptotic mediator Akt but not ERK MAPK. Pharmacological inhibition of PI3K/Akt signaling reversed the anti-apoptotic effects of NRG4, confirming the role of this cascade in NRG4-induced cell survival. With regard to the potential clinical importance of this pathway, NRG4 expression was decreased in human inflammatory bowel disease samples and mouse models of colitis, suggesting that activation of ErbB4 is altered in disease. Thus, exogenous NRG4 may be beneficial for disorders in which epithelial apoptosis is part of the pathology.


Asunto(s)
Colon/metabolismo , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Neurregulinas/metabolismo , Animales , Apoptosis/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular , Colon/patología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Receptores ErbB/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interferón gamma/genética , Interferón gamma/metabolismo , Mucosa Intestinal/patología , Ligandos , Masculino , Ratones , Neurregulinas/genética , Receptor ErbB-4 , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Development ; 137(14): 2289-96, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20534672

RESUMEN

Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.


Asunto(s)
Islotes Pancreáticos/metabolismo , Páncreas/fisiología , Adulto , Animales , Diferenciación Celular , Colangiopancreatografia Retrógrada Endoscópica , Células Endocrinas , Células Epiteliales/metabolismo , Epitelio/metabolismo , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Páncreas/metabolismo , Páncreas Exocrino/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Transducción de Señal
17.
Inflamm Bowel Dis ; 29(11): 1778-1792, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37265326

RESUMEN

BACKGROUND: Growth factors are essential for maintenance of intestinal health. We previously showed that exogenous neuregulin-4 (NRG4) promotes colonocyte survival during cytokine challenge and is protective against acute models of intestinal inflammation. However, the function(s) of endogenous NRG4 are not well understood. Using NRG4-/- mice, we tested the role of endogenous NRG4 in models of colitis skewed toward either adaptive (interleukin-10 receptor [IL-10R] neutralization) or innate (dextran sulfate sodium [DSS]) immune responses. METHODS: NRG4-/- and wild-type cage mate mice were subjected to chronic IL-10R neutralization colitis and acute DSS colitis. Disease was assessed by histological examination, inflammatory cytokine levels, fecal lipocalin-2 levels, and single cell mass cytometry immune cell profiling. Homeostatic gene alterations were evaluated by RNA sequencing analysis from colonic homogenates, with real-time quantitative polymerase chain reaction confirmation in both tissue and isolated epithelium. RESULTS: During IL-10R neutralization colitis, NRG4-/- mice had reduced colonic inflammatory cytokine expression, histological damage, and colonic CD8+ T cell numbers vs wild-type cage mates. Conversely, in DSS colitis, NRG4-/- mice had elevated cytokine expression, fecal lipocalin-2 levels, and impaired weight recovery. RNA sequencing showed a loss of St3gal4, a sialyltransferase involved in immune cell trafficking, in NRG4-null colons, which was verified in both tissue and isolated epithelium. The regulation of St3gal4 by NRG4 was confirmed with ex vivo epithelial colon organoid cultures from NRG4-/- mice and by induction of St3gal4 in vivo following NRG4 treatment. CONCLUSIONS: NRG4 regulates colonic epithelial ST3GAL4 and thus may allow for robust recruitment of CD8+ T cells during adaptive immune responses in colitis. On the other hand, NRG4 loss exacerbates injury driven by innate immune responses.


Neuregulin-4 (NRG4) is a growth factor that protects the epithelial cells lining the colon from injury and restrains innate (non-specific) immune responses. Here we show that NRG4's role in inflammation is context-specific, and mice that lack NRG4 have impaired adaptive immunity in a model of chronic immune-mediated colitis.


Asunto(s)
Colitis , Mucosa Intestinal , Ratones , Animales , Lipocalina 2/metabolismo , Mucosa Intestinal/patología , Colitis/patología , Inmunidad Adaptativa , Citocinas/metabolismo , Colon/patología , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratones Noqueados
18.
Mol Cancer Ther ; 22(10): 1144-1153, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37523711

RESUMEN

The Cooperative Human Tissue Network was created by the NCI in 1987 to support a coordinated national effort to collect and distribute high quality, pathologist-validated human tissues for cancer research. Since then, the network has expanded to provide different types of tissue samples, blood and body fluid samples, immunohistologic and molecular sample preparations, tissue microarrays, and clinical datasets inclusive of biomarkers and molecular testing. From inception through the end of 2021, the network has distributed 1,375,041 biospecimens. It served 889 active investigators in 2021. The network has also taken steps to begin to optimize the representation of diverse communities among the distributed biospecimens. In this article, the authors review the 35-year history of this network, describe changes to the program over the last 15 years, and provide operational and scientific highlights from each of the divisions. Readers will learn how to engage with the network and about the continued evolution of the program for the future.


Asunto(s)
Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Biomarcadores
19.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815870

RESUMEN

Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Claudina-2/genética , Claudina-2/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/genética , Neoplasias Asociadas a Colitis/complicaciones , Neoplasias Asociadas a Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Survivin/metabolismo
20.
Am Surg ; 89(4): 1141-1143, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33342253

RESUMEN

Idiopathic myointimal hyperplasia of the mesenteric veins (IMHMV) is a rare cause of chronic colonic ischemia characterized by intimal smooth muscle proliferation and luminal narrowing of the small to medium sized mesenteric veins. It predominantly affects the rectosigmoid colon in otherwise healthy, middle-aged males. Definitive diagnosis and treatment are surgical; however, patients are frequently misdiagnosed, which often results in a protracted clinical course. We describe a case of IMHMV presenting as left hemicolitis in a 53-year-old male, as well as the endoscopic, histopathologic, and radiographic findings that established the diagnosis.


Asunto(s)
Colitis Isquémica , Enfermedades Inflamatorias del Intestino , Masculino , Persona de Mediana Edad , Humanos , Hiperplasia/patología , Venas Mesentéricas/cirugía , Colitis Isquémica/etiología , Colitis Isquémica/patología , Colitis Isquémica/cirugía , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA