RESUMEN
Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4 + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.
Asunto(s)
Agricultura/métodos , Calentamiento Global , Oryza/metabolismo , Riego Agrícola , Contaminantes Atmosféricos/análisis , Efecto Invernadero , Metano/análisis , Óxido Nitroso/análisis , Oryza/crecimiento & desarrollo , Estaciones del Año , Suelo/química , Zea mays/crecimiento & desarrollo , Zea mays/metabolismoRESUMEN
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.
Asunto(s)
Agricultura , Cambio Climático , Gases/análisis , Efecto Invernadero/prevención & control , Carbono/análisis , Efecto Invernadero/legislación & jurisprudencia , Cooperación Internacional , Metano/análisis , Política Pública , Suelo/químicaRESUMEN
Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2 O, CO2 , and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4 ) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm(-3) increase in water vapor. The daily CO2 , N2 O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2 O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2 O (PN2 O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2 ) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2 O fluxes across N levels were higher than those of GC-CH4 and GC-N2 O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2 O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.
Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Acústica , Cromatografía de Gases/métodos , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Oryza , Espectrofotometría Infrarroja/métodos , Triticum , Zea maysRESUMEN
Increasing water scarcity and rapid socio-economic development are driving farmers in Asia to transform traditionally flooded rice cropping systems into non-flooded crop production. The management of earthworms in non-flooded rice fields appears to be a promising strategy to support residue recycling and mitigate greenhouse gas (GHG) emissions triggered by residue amendment. We conducted a field experiment on non-flooded rainfed rice fields, with and without residue amendment. In-situ mesocosms were inoculated with endogeic earthworms (Metaphire sp.), with either low (ET1: 150 individuals m-2), or high density (ET2: 450 individuals m-2), and a control (ET0: no earthworms). We measured GHG emissions (methane (CH4); nitrous oxide (N2O); carbon dioxide (CO2)) twice a week during the cropping season with static chambers. Effects of earthworms on yield and root growth were additionally assessed. Earthworms offset the enormous increase of CH4 emissions induced by straw amendment (from 4.6 ± 5 to 75.3 ± 46 kg CH4-C ha-1 in ET0). Earthworm activity significantly reduced CH4 release, particularly at ET2, by more than one-third (to 22 ± 15 kg CH4-C ha-1). In contrast, earthworm inoculation did not affect N2O emission. Straw amendment more than doubled the global warming potential (GWP). Earthworms reduced GWP by 39% at low (ET1) and 55% at high densities (ET2). Earthworm activity reduced root mass density under conditions of straw amendment but did not affect yield. Earthworms can significantly reduce detrimental effects of rice crop residue amendment on GHG release under upland rice production. Organic carbon (C) might be preserved in earthworm casts and thereby limit C availability for CH4 production. At the same time, earthworm activity might increase methanotrophic CH4 consumption, due to improved soil aeration or less root exudates. Consequently, earthworms have a strong potential for regulating ecosystem functions related to rice straw decomposition, nutrient allocation and thus GHG reduction.
Asunto(s)
Gases de Efecto Invernadero , Oligoquetos , Oryza , Agricultura , Animales , Asia , Calentamiento Global , Metano , Óxido Nitroso , SueloRESUMEN
This study comprises field experiments on methane emissions from rice fields conducted with an Eddy-Covariance (EC) system as well as test runs for a modified closed chamber approach based on measurements at nighttime. The EC data set covers 4 cropping seasons with highly resolved emission rates (raw data in 10 Hz frequency have been aggregated to 30-min records). The diel patterns were very pronounced in the two dry seasons with peak emissions at early afternoon and low emissions at nighttime. These diel patterns were observed at all growing stages of the dry seasons. In the two wet seasons, the diel patterns were only visible during the vegetative stages while emission rates during reproductive and ripening stages remained within a fairly steady range and did not show any diel patterns. In totality, however, the data set revealed a very strong linear relationship between nocturnal emissions (12-h periods) and the full 24-h periods resulting in an R2-value of 0.8419 for all data points. In the second experiment, we conducted test runs for chamber measurements at nighttime with much longer deployment times (6 h) as compared to measurements at daylight (typically for 30 min). Conducting chamber measurements at nighttime excluded drastic changes of temperatures and CO2 concentrations. The data also shows that increases in CH4 concentrations remained on linear trajectory over a 6h period at night. While end CH4 concentrations were consistently >3.5 ppm, this long-term enclosure represents a very robust approach to quantify emissions as compared to assessing short-term concentration increases over time near the analytical detection limit. Finally, we have discussed the potential applications of this new approach that would allow emission measurements even when conventional (daytime) measurements will not be suitable. Nighttime chamber measurements offer an alternative to conventional (daytime) measurements if either (i) baseline emissions are at a very low level, (ii) differences of tested crop treatments or varieties are very small or (iii) the objective is to screen a large number of rice varieties for taking advantage of progress in genome sequencing.
Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Metano/análisis , Oryza/crecimiento & desarrollo , Estaciones del Año , TemperaturaRESUMEN
70% of the world's freshwater is used for irrigated agriculture and demand is expected to increase to meet future food security requirements. In Asia, rice accounts for the largest proportion of irrigated water use and reducing or conserving water in rice systems has been a long standing goal in agricultural research. The Alternate Wetting and Drying (AWD) technique has been developed to reduce water use by up to 30% compared to the continuously flooded conditions typically found in rice systems, while not impacting yield. AWD also reduces methane emissions produced by anaerobic archae and hence has applications for reducing water use and greenhouse gas emissions. Although AWD is being promoted across Asia, there have been no attempts to estimate the suitable area for this promising technology on a large scale. We present and demonstrate a spatial and temporal climate suitability assessment method for AWD that can be widely applied across rice systems in Asia. We use a simple water balance model and easily available spatial and temporal information on rice area, rice seasonality, rainfall, potential evapotranspiration and soil percolation rates to assess the suitable area per season. We apply the model to Cagayan province in the Philippines and conduct a sensitivity analysis to account for uncertainties in soil percolation and suitability classification. As expected, the entire dry season is climatically suitable for AWD for all scenarios. A further 60% of the wet season area is found suitable contradicting general perceptions that AWD would not be feasible in the wet season and showing that spatial and temporal assessments are necessary to explore the full potential of AWD.
Asunto(s)
Producción de Cultivos/métodos , Productos Agrícolas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Abastecimiento de Agua , Humanos , FilipinasRESUMEN
The above- and below-ground parts of rice plants create specific habitats for various microorganisms. In this study, we characterized the phyllosphere and rhizosphere microbiota of rice cultivars using a metaproteogenomic approach to get insight into the physiology of the bacteria and archaea that live in association with rice. The metaproteomic datasets gave rise to a total of about 4600 identified proteins and indicated the presence of one-carbon conversion processes in the rhizosphere as well as in the phyllosphere. Proteins involved in methanogenesis and methanotrophy were found in the rhizosphere, whereas methanol-based methylotrophy linked to the genus Methylobacterium dominated within the protein repertoire of the phyllosphere microbiota. Further, physiological traits of differential importance in phyllosphere versus rhizosphere bacteria included transport processes and stress responses, which were more conspicuous in the phyllosphere samples. In contrast, dinitrogenase reductase was exclusively identified in the rhizosphere, despite the presence of nifH genes also in diverse phyllosphere bacteria.