Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(33): 4419-4422, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38505980

RESUMEN

Ultra-small metal particles having band gaps are regarded as a new class of functional materials. We investigated the size dependencies of the band-edge energies on Cu quantum-dots in the size range of 0.7-2.1 nm. The extremely high conduction band-edge energies owing to the strong quantum-size effects were observed for sizes below 1 nm.

2.
Sci Rep ; 14(1): 13481, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866850

RESUMEN

Unique architectures of microbial skeletons are viewed as a model for the architectural design of artificial structural materials. In particular, the specific geometric arrangement of a spherical skeleton 0.5-1.5 mm in diameter of shell-bearing protists, Phaeodaria (Aulosphaera sp.), is remarkably interesting because of its similarity to a geodesic polyhedron, which is a hollow framework with 6-branched nodes that requires minimal building material for maximal strength. A phaeodarian skeleton composed of silica rods 5-10 µm in diameter was characterized as a distorted dome that is based on an icosahedron sectioned with a 7-frequency subdivision. The major difference of the biogenic architecture from the ideal geodesic dome is the coexistence of 7- and 5-branched nodes with the distortion of the frames and the presence of radial spines. From a microscopic perspective, the frames and radial spines were revealed to be hollow tubes having inner fibers and lamellar walls consisting of silica nanoparticles 4-8 nm in diameter with interlayer organic matter. The high degradability of the silica skeleton in seawater after cell mortality is ascribed to the specific nanometric composite structure. The biological architectonics sheds light on the production of environmentally friendly, lightweight structural materials and microdevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA