Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502443

RESUMEN

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Asunto(s)
Clostridium botulinum tipo E/enzimología , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Clostridium/efectos de los fármacos , Clostridium/ultraestructura , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/farmacología , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Profagos/enzimología , Ácidos Teicoicos/metabolismo
2.
CRISPR J ; 7(1): 12-28, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353617

RESUMEN

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Edición Génica , Ganado
3.
Front Cell Dev Biol ; 10: 1059710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438568

RESUMEN

Fibroblasts are the common cell type in the connective tissue-the most abundant tissue type in the body. Fibroblasts are widely used for cell culture, for the generation of induced pluripotent stem cells (iPSCs), and as nuclear donors for somatic cell nuclear transfer (SCNT). We report for the first time, the derivation of embryonic fibroblasts (EFs) from porcine embryonic outgrowths, which share similarities in morphology, culture characteristics, molecular markers, and transcriptional profile to fetal fibroblasts (FFs). We demonstrated the efficient use of EFs as nuclear donors in SCNT, for enhanced post-blastocyst development, implantation, and pregnancy outcomes. We further validated EFs as a source for CRISPR/Cas genome editing with overall editing frequencies comparable to that of FFs. Taken together, we established an alternative and efficient pipeline for genome editing and for the generation of genetically engineered animals.

4.
CRISPR J ; 3(6): 523-534, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33252243

RESUMEN

Selective breeding and genetic modification have been the cornerstone of animal agriculture. However, the current strategy of breeding animals over multiple generations to introgress novel alleles is not practical in addressing global challenges such as climate change, pandemics, and the predicted need to feed a population of 9 billion by 2050. Consequently, genome editing in zygotes to allow for seamless introgression of novel alleles is required, especially in cattle with long generation intervals. We report for the first time the use of CRISPR-Cas genome editors to introduce novel PRNP allelic variants that have been shown to provide resilience towards human prion pandemics. From one round of embryo injections, we have established six pregnancies and birth of seven edited offspring, with two founders showing >90% targeted homology-directed repair modifications. This study lays out the framework for in vitro optimization, unbiased deep-sequencing to identify editing outcomes, and generation of high frequency homology-directed repair-edited calves.


Asunto(s)
Edición Génica/métodos , Ingeniería Genética/métodos , Selección Artificial/genética , Alelos , Animales , Sistemas CRISPR-Cas/genética , Bovinos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Embrión de Mamíferos , Genómica/métodos , Cigoto/metabolismo
5.
Antibiotics (Basel) ; 8(3)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546935

RESUMEN

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.

6.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010898

RESUMEN

Clostridium perfringens, a spore-forming anaerobic bacterium, causes food poisoning and gas gangrene in humans and is an agent of necrotizing enteritis in poultry, swine and cattle. Endolysins are peptidoglycan hydrolases from bacteriophage that degrade the bacterial host cell wall causing lysis and thus harbor antimicrobial therapy potential. The genes for the PlyCP10 and PlyCP41 endolysins were found in prophage regions of the genomes from C. perfringens strains Cp10 and Cp41, respectively. The gene for PlyCP10 encodes a protein of 351 amino acids, while the gene for PlyCP41 encodes a protein of 335 amino acids. Both proteins harbor predicted glycosyl hydrolase domains. Recombinant PlyCP10 and PlyCP41 were expressed in E. coli with C-terminal His-tags, purified by nickel chromatography and characterized in vitro. PlyCP10 activity was greatest at pH 6.0, and between 50 and 100 mM NaCl. PlyCP41 activity was greatest between pH 6.5 and 7.0, and at 50 mM NaCl, with retention of activity as high as 600 mM NaCl. PlyCP10 lost most of its activity above 42°C, whereas PlyCP41 survived at 50°C for 30 min and still retained >60% activity. Both enzymes had lytic activity against 75 C. perfringens strains (isolates from poultry, swine and cattle) suggesting therapeutic potential.


Asunto(s)
Bacteriófagos/enzimología , Clostridium perfringens/efectos de los fármacos , Endopeptidasas/química , Endopeptidasas/farmacología , Gangrena Gaseosa/veterinaria , Profagos/enzimología , Proteínas Virales/química , Proteínas Virales/farmacología , Animales , Bacteriólisis , Bacteriófagos/química , Bacteriófagos/clasificación , Bacteriófagos/genética , Bovinos , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/fisiología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Estabilidad de Enzimas , Gangrena Gaseosa/microbiología , Gangrena Gaseosa/terapia , Concentración de Iones de Hidrógeno , Filogenia , Aves de Corral , Profagos/química , Profagos/clasificación , Profagos/genética , Dominios Proteicos , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA