Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(6): 1912-1924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38302560

RESUMEN

Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.


Asunto(s)
Encéfalo , Microglía , Neuroinmunomodulación , Trastornos Relacionados con Sustancias , Microglía/efectos de los fármacos , Microglía/metabolismo , Humanos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Citocinas/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Inflamación
2.
Brain Behav Immun ; 118: 368-379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471576

RESUMEN

Microglia play a central role in the etiology of many neuropathologies. Transgenic tools are a powerful experiment approach to gain reliable and specific control over microglia function. Adeno-associated virus (AAVs) vectors are already an indispensable tool in neuroscience research. Despite ubiquitous use of AAVs and substantial interest in the role of microglia in the study of central nervous system (CNS) function and disease, transduction of microglia using AAVs is seldom reported. This review explores the challenges and advancements made in using AAVs for expressing transgenes in microglia. First, we will examine the functional anatomy of the AAV capsid, which will serve as a basis for subsequent discussions of studies exploring the relationship between capsid mutations and microglia transduction efficacy. After outlining the functional anatomy of AAVs, we will consider the experimental evidence demonstrating AAV-mediated transduction of microglia and microglia-like cell lines followed by an examination of the most promising experimental approaches identified in the literature. Finally, technical limitations will be considered in future applications of AAV experimental approaches.


Asunto(s)
Dependovirus , Microglía , Animales , Dependovirus/genética , Transducción Genética , Microglía/metabolismo , Animales Modificados Genéticamente , Transgenes , Vectores Genéticos
3.
Brain Behav Immun ; 115: 157-168, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838078

RESUMEN

Females represent a majority of chronic pain patients and show greater inflammatory immune responses in human chronic pain patient populations as well as in animal models of neuropathic pain. Recent discoveries in chronic pain research have revealed sex differences in inflammatory signaling, a key component of sensory pathology in chronic neuropathic pain, inviting more research into the nuances of these sex differences. Here we use the chronic constriction injury (CCI) model to explore similarities and differences in expression and production of Inflammatory cytokine IL-1beta in the lumbar spinal cord, as well as its role in chronic pain. We have discovered that intrathecal IL-1 receptor antagonist reverses established pain in both sexes, and increased gene expression of inflammasome NLRP3 is specific to microglia and astrocytes rather than neurons, while IL-1beta is specific to microglia in both sexes. We report several sex differences in the expression level of the genes coding for IL-1beta, as well as the four inflammasomes responsible for IL-1beta release: NLRP3, AIM2, NLRP1, and NLRC4 in the spinal cord. Total mRNA, but not protein expression of IL-1beta is greater in females than males after CCI. Also, while CCI increases all four inflammasomes in both sexes, there are sex differences in relative levels of inflammasome expression. NLRP3 and AIM2 are more highly expressed in females, whereas NLRP1 expression is greater in males.


Asunto(s)
Dolor Crónico , Inflamasomas , Interleucina-1beta , Neuralgia , Animales , Femenino , Humanos , Masculino , Ratas , Dolor Crónico/metabolismo , Constricción , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Neuralgia/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Médula Espinal/metabolismo
4.
Brain Behav Immun ; 115: 419-431, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924957

RESUMEN

Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Humanos , Ratas , Animales , Vaina de Mielina/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento , Actividad Motora/fisiología , Traumatismos de los Nervios Periféricos/complicaciones , Hiperalgesia/metabolismo , Neuralgia/complicaciones , Nervio Ciático/lesiones
5.
J Neurosci Res ; 100(1): 265-277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533604

RESUMEN

The present series of studies examine the impact of systemically administered therapeutics on peripheral nerve injury (males; unilateral sciatic chronic constriction injury [CCI])-induced suppression of voluntary wheel running, across weeks after dosing cessation. Following CCI, active phase running distance and speed are suppressed throughout the 7-week observation period. A brief course of morphine, however, increased active phase running distance and speed throughout this same period, an effect apparent only in sham rats. For CCI rats, systemic co-administration of morphine with antagonists of either P2X7 (A438079) or TLR4 ((+)-naloxone) (receptors critical to the activation of NLRP3 inflammasomes and consequent inflammatory cascades) returned running behavior of CCI rats to that of shams through 5+ weeks after dosing ceased. This is a striking difference in effect compared to our prior CCI allodynia results using systemic morphine plus intrathecal delivery of these same antagonists, wherein a sustained albeit partial suppression of neuropathic pain was observed. This may point to actions of the systemic drugs at multiple sites along the neuraxis, modulating injury-induced, inflammasome-mediated effects at the injured sciatic nerve and/or dorsal root ganglia, spinal cord, and potentially higher levels. Given that our data to date point to morphine amplifying neuroinflammatory processes put into motion by nerve injury, it is intriguing to speculate that co-administration of TLR4 and/or P2X7 antagonists can intervene in these inflammatory processes in a beneficial way. That is, that systemic administration of such compounds may suppress inflammatory damage at multiple sites, rapidly and persistently returning neuropathic animals to sham levels of response.


Asunto(s)
Morfina , Neuralgia , Animales , Constricción , Intervención en la Crisis (Psiquiatría) , Hiperalgesia/tratamiento farmacológico , Masculino , Morfina/farmacología , Actividad Motora , Neuralgia/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Nervio Ciático , Receptor Toll-Like 4
6.
Semin Cell Dev Biol ; 94: 176-185, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30638704

RESUMEN

Exposure to stressors disrupts homeostasis and results in the release of stress hormones including glucocorticoids, epinepherine and norepinepherine. Interestingly, stress also has profound affects on microglia, which are tissue-resident macrophages in the brain parenchyma. Microglia express a diverse array of receptors, which also allows them to respond to stress hormones derived from peripheral as well as central sources. Here, we review studies of how exposure to acute and chronic stressors alters the immunophenotype and function of microglia. Further, we examine a causal for stress hormones in these effects of stress on microglia. We propose that microglia serve as immunosensors of the stress response, which puts them in the unique position to sense and respond rapidly to alterations in homeostasis and integrate the neural response to threats.


Asunto(s)
Microglía/inmunología , Estrés Psicológico/inmunología , Animales , Humanos
7.
Brain Behav Immun ; 97: 365-370, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284114

RESUMEN

Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy - a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.


Asunto(s)
MicroARNs , Neuralgia , Traumatismos de la Médula Espinal , Envejecimiento , Animales , Modelos Animales de Enfermedad , Femenino , Hiperalgesia , Ratones , Ratones Noqueados , MicroARNs/genética , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones
8.
Brain Behav Immun ; 93: 80-95, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33358978

RESUMEN

Neuropathic pain is a major symptom of multiple sclerosis (MS) with up to 92% of patients reporting bodily pain, and 85% reporting pain severe enough to cause functional disability. None of the available therapeutics target MS pain. Toll-like receptors 2 and 4 (TLR2/TLR4) have emerged as targets for treating a wide array of autoimmune disorders, including MS, as well as having demonstrated success at suppressing pain in diverse animal models. The current series of studies tested systemic TLR2/TLR4 antagonists in males and females in a low-dose Myelin oligodendrocyte glycoprotein (MOG) experimental autoimmune encephalomyelitis (EAE) model, with reduced motor dysfunction to allow unconfounded testing of allodynia through 50+ days post-MOG. The data demonstrated that blocking TLR2/TLR4 suppressed EAE-related pain, equally in males and females; upregulation of dorsal spinal cord proinflammatory gene expression for TLR2, TLR4, NLRP3, interleukin-1ß, IkBα, TNF-α and interleukin-17; and upregulation of dorsal spinal cord expression of glial immunoreactivity markers. In support of these results, intrathecal interleukin-1 receptor antagonist reversed EAE-induced allodynia, both early and late after EAE induction. In contrast, blocking TLR2/TLR4 did not suppress EAE-induced motor disturbances induced by a higher MOG dose. These data suggest that blocking TLR2/TLR4 prevents the production of proinflammatory factors involved in low dose EAE pathology. Moreover, in this EAE model, TLR2/TLR4 antagonists were highly effective in reducing pain, whereas motor impairment, as seen in high dose MOG EAE, is not affected.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Manejo del Dolor , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Glicoproteína Mielina-Oligodendrócito , Dolor , Médula Espinal
9.
FASEB J ; 33(8): 9577-9587, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162938

RESUMEN

Deregulation of innate immune TLR4 signaling contributes to various diseases including neuropathic pain and drug addiction. Naltrexone is one of the rare TLR4 antagonists with good blood-brain barrier permeability and showing no stereoselectivity for TLR4. By linking 2 naltrexone units through a rigid pyrrole spacer, the bivalent ligand norbinaltorphimine was formed. Interestingly, (+)-norbinaltorphimine [(+)-1] showed ∼25 times better TLR4 antagonist activity than naltrexone in microglial BV-2 cell line, whereas (-)-norbinaltorphimine [(-)-1] lost TLR4 activity. The enantioselectivity of norbinaltorphimine was further confirmed in primary microglia, astrocytes, and macrophages. The activities of meso isomer of norbinaltorphimine and the molecular dynamic simulation results demonstrate that the stereochemistry of (+)-1 is derived from the (+)-naltrexone pharmacophore. Moreover, (+)-1 significantly increased and prolonged morphine analgesia in vivo. The efficacy of (+)-1 is long lasting. This is the first report showing enantioselective modulation of the innate immune TLR signaling.-Zhang, X., Peng, Y., Grace, P. M., Metcalf, M. D., Kwilasz, A. J., Wang, Y., Zhang, T., Wu, S., Selfridge, B. R., Portoghese, P. S., Rice, K. C., Watkins, L. R., Hutchinson, M. R., Wang, X. Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling.


Asunto(s)
Antígeno 96 de los Linfocitos/metabolismo , Naltrexona/análogos & derivados , Receptor Toll-Like 4/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Interleucina-1beta/metabolismo , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Naltrexona/química , Naltrexona/farmacología , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Receptor Toll-Like 4/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
10.
Brain Behav Immun ; 89: 32-42, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485293

RESUMEN

Prior exposure to acute and chronic stressors potentiates the neuroinflammatory and microglial pro-inflammatory response to subsequent immune challenges suggesting that stressors sensitize or prime microglia. Stress-induced priming of the NLRP3 inflammasome has been implicated in this priming phenomenon, however the duration/persistence of these effects has not been investigated. In the present study, we examined whether exposure to a single acute stressor (inescapable tailshock) induced a protracted priming of the NLRP3 inflammasome as well as the neuroinflammatory, behavioral and microglial proinflammatory response to a subsequent immune challenge in hippocampus. In male Sprague-Dawley rats, acute stress potentiated the neuroinflammatory response (IL-1ß, IL-6, and NFκBIα) to an immune challenge (lipopolysaccharide; LPS) administered 8 days after stressor exposure. Acute stress also potentiated the proinflammatory cytokine response (IL-1ß, IL-6, TNF and NFκBIα) to LPS ex vivo. This stress-induced priming of microglia also was observed 28 days post-stress. Furthermore, challenge with LPS reduced juvenile social exploration, but not sucrose preference, in animals exposed to stress 8 days prior to immune challenge. Exposure to acute stress also increased basal mRNA levels of NLRP3 and potentiated LPS-induction of caspase-1 mRNA and protein activity 8 days after stress. The present findings suggest that acute stress produces a protracted vulnerability to the neuroinflammatory effects of subsequent immune challenges, thereby increasing risk for stress-related psychiatric disorders with an etiological inflammatory component. Further, these findings suggest the unique possibility that acute stress might induce innate immune memory in microglia.


Asunto(s)
Inflamasomas , Microglía , Animales , Lipopolisacáridos , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Ratas Sprague-Dawley
11.
Brain Behav Immun ; 90: 155-166, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800926

RESUMEN

Osteoarthritis results in chronic pain and loss of function. Proinflammatory cytokines create both osteoarthritis pathology and pain. Current treatments are poorly effective, have significant side effects, and have not targeted the cytokines central to osteoarthritis development and maintenance. Interleukin-10 is an anti-inflammatory cytokine that potently and broadly suppresses proinflammatory cytokine activity. However, interleukin-10 protein has a short half-life in vivo and poor joint permeability. For sustained IL-10 activity, we developed a plasmid DNA-based therapy that expresses a long-acting human interleukin-10 variant (hIL-10var). Here, we describe the 6-month GLP toxicology study of this therapy. Intra-articular injections of hIL-10var pDNA into canine stifle joints up to 1.5 mg bilaterally were well-tolerated and without pathologic findings. This represents the first long-term toxicologic assessment of intra-articular pDNA therapy. We also report results of a small double-blind, placebo-controlled study of the effect of intra-articular hIL-10var pDNA on pain measures in companion (pet) dogs with naturally occurring osteoarthritis. This human IL-10-based targeted therapy reduced pain measures in the dogs, based on veterinary and owner ratings, without any adverse findings. These results with hIL-10var pDNA therapy, well-tolerated and without toxicologic effects, establish the basis for clinical trials of a new class of safe and effective therapies for OA.


Asunto(s)
Osteoartritis de la Rodilla , Osteoartritis , Animales , Perros , Terapia Genética , Interleucina-10 , Osteoartritis/terapia , Dolor , Plásmidos
12.
Brain Behav Immun ; 90: 70-80, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32750541

RESUMEN

The proinflammatory cytokine interleukin (IL)-1ß plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1ß in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra-cellular release of IL-1ß in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1ß release into the extracellular milieu been characterized in brain. This cellular process involves a form of inflammatory cell death, termed pyroptosis, which involves: 1) activation of caspase-1, 2) caspase-1 maturation of IL-1ß, 3) caspase-1 cleavage of gasdermin D (GSDMD), and 4) GSDMD-induced permeability of the cell membrane through which IL-1ß is released into the extracellular space. Thus, the present study examined whether stress induces the extra-cellular release of IL-1ß and engages the above cellular process in mediating IL-1ß release in the brain. Male Sprague-Dawley rats were exposed to inescapable tailshock (IS). IL-1ß extra-cellular release, caspase-1 activity and cleavage of GSDMD were measured in dorsal hippocampus. We found that exposure to IS induced a transient increase in the release of IL-1ß into the extracellular space immediately after termination of the stressor. IS also induced a transient increase in caspase-1 activity prior to IL-1ß release, while activation of GSDMD was observed immediately after termination of the stressor. IS also increased mRNA and protein expression of the ESCRTIII protein CHMP4B, which is involved in cellular repair. The present results suggest that exposure to an acute stressor induces the hallmarks of pyroptosis in brain, which might serve as a key cellular process involved in the release of IL-1ß into the extracellular milieu of the brain parenchyma.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Animales , Caspasa 1/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de Unión a Fosfato/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Stress ; 23(4): 405-416, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31868091

RESUMEN

Circadian rhythms are ∼24 h fluctuations in physiology and behavior that are synchronized with the light-dark cycle. The circadian system ensures homeostatic balance by regulating multiple systems that respond to environmental stimuli including stress systems. In rats, acute exposure to a series of uncontrollable tailshocks (inescapable stress, IS) produces an anxiety and depression-like phenotype. Anxiety- and fear-related behavioral changes produced by IS are driven by sensitization of serotonergic (5-hydroxytryptamine, 5-HT) neurons in the dorsal raphe nucleus (DRN). Because the circadian and serotonergic systems are closely linked, here we tested whether the DRN-dependent behavioral and neurochemical effects of IS are time of day dependent. Exposure to IS during the light (inactive) phase elicited the expected changes in mood related behaviors. In contrast, rats that underwent IS during the dark (active) phase were buffered against stress-induced changes in juvenile social exploration and shock-elicited freezing, both DRN-dependent outcomes. Interestingly, behavioral anhedonia, which is not a DRN-dependent behavior, was comparably reduced by stress at both times of day. Neurochemical changes complimented the behavioral results: IS-induced activation of DRN 5-HT neurons was greater during the light phase compared to the dark phase. Additionally, 5-HT1AR and 5-HTT, two genes that regulate 5-HT activity were up-regulated during the middle of the light cycle. These data suggest that DRN-dependent behavioral outcomes of IS are time of day dependent and may be mediated by circadian gating of the DRN response to stress.Lay summaryHere we show that the time of day at which a stressor occurs impacts the behavioral and neurochemical outcomes of the stressor. In particular, animals appear more vulnerable to a stressor that occurs during their rest phase. This work may have important implications for shift-workers and other populations that are more likely to encounter stressors during their rest phase.


Asunto(s)
Núcleo Dorsal del Rafe , Estrés Psicológico , Animales , Ansiedad , Ratas , Ratas Sprague-Dawley , Serotonina
14.
Neurobiol Dis ; 132: 104514, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31229690

RESUMEN

TAR-DNA binding protein 43 (TDP-43) is a multifunctional RNA binding protein directly implicated in the etiology of amyotrophic lateral sclerosis (ALS). Previous studies have demonstrated that loss of TDP-43 function leads to intracellular accumulation of non-coding repetitive element transcripts and double-stranded RNA (dsRNA). These events could cause immune activation and contribute to the neuroinflammation observed in ALS, but this possibility has not been investigated. Here, we knock down TDP-43 in primary rat astrocytes via siRNA, and we use RNA-seq, immunofluorescence, and immunoblotting to show that this results in: 1) accumulation of repetitive element transcripts and dsRNA; and 2) pro-inflammatory gene and protein expression consistent with innate immune signaling and astrocyte activation. We also show that both chemical inhibition and siRNA knockdown of protein kinase R (PKR), a dsRNA-activated kinase implicated in the innate immune response, block the expression of all activation markers assayed. Based on these findings, we suggest that intracellular accumulation of endogenous dsRNA may be a novel and important mechanism underlying the pathogenesis of ALS (and perhaps other neurodegenerative diseases), and that PKR inhibitors may have the potential to prevent reactive astrocytosis in ALS.


Asunto(s)
Astrocitos/inmunología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/inmunología , Técnicas de Silenciamiento del Gen/métodos , Inmunidad Innata/inmunología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Proteínas de Unión al ADN/genética , Inmunidad Innata/genética , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas
15.
Brain Behav Immun ; 80: 678-687, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31078691

RESUMEN

Exposure to stressors primes neuroinflammatory responses to subsequent immune challenges and stress-induced glucocorticoids (GCs) play a mediating role in this phenomenon of neuroinflammatory priming. Recent evidence also suggests that the alarmin high-mobility group box-1 (HMGB1) and the microglial checkpoint receptor CD200R1 serve as proximal mechanisms of stress-induced neuroinflammatory priming. However, it is unclear whether stress-induced GCs play a causal role in these proximal mechanisms of neuroinflammatory priming; this forms the focus of the present investigation. Here, we found that exposure to a severe acute stressor (inescapable tailshock) induced HMGB1 and reduced CD200R1 expression in limbic brain regions and pharmacological blockade of GC signaling (RU486) mitigated these effects of stress. To confirm these effects of RU486, adrenalectomy (ADX) with basal corticosterone (CORT) replacement was used to block the stress-induced increase in GCs as well as effects on HMGB1 and CD200R1. As with RU486, ADX mitigated the effects of stress on HMGB1 and CD200R1. Subsequently, exogenous CORT was administered to determine whether GCs are sufficient to recapitulate the effects of stress. Indeed, exogenous CORT induced expression of HMGB1 and reduced expression of CD200R1. In addition, exposure of primary microglia to CORT also recapitulated the effects of stress on CD200R1 suggesting that CORT acts directly on microglia to reduce expression of CD200R1. Taken together, these findings suggest that GCs mediate the effects of stress on these proximal mechanisms of neuroinflammatory priming.


Asunto(s)
Encéfalo/metabolismo , Glucocorticoides/metabolismo , Proteína HMGB1/metabolismo , Sistema Límbico/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Estrés Psicológico/metabolismo , Animales , Encéfalo/efectos de los fármacos , Corticosterona/metabolismo , Corticosterona/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/metabolismo , Sistema Límbico/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Microglía/efectos de los fármacos , Mifepristona/farmacología , Neuroinmunomodulación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
16.
Brain Behav Immun ; 76: 116-125, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30453021

RESUMEN

Neuropathic pain is a widespread problem which remains poorly managed by currently available therapeutics. Peripheral nerve injury and inflammation leads to changes at the nerve injury site, including activation of resident and recruited peripheral immune cells, that lead to neuronal central sensitization and pain amplification. The present series of studies tested the effects of peri-sciatic nerve delivery of single doses of adenosine 2A receptor (A2aR) agonists on pain and neuroinflammation. The data provide converging lines of evidence supportive that A2aR agonism at the site of peripheral nerve injury and inflammation is effective in suppressing ongoing neuropathic pain. After A2aR agonism resolved neuropathic pain, a return of pain enhancement (allodynia) was observed in response to peri-sciatic injection of H-89, which can inhibit protein kinase A, and by peri-sciatic injection of neutralizing antibody against the potent anti-inflammatory cytokine interleukin-10. A2aR agonist actions at the nerve injury site suppress neuroinflammation, as reflected by decreased release of interleukin-1ß and nitric oxide, as well as decreased sciatic expression of markers of monocytes/macrophages and inducible nitric oxide synthase. Taken together, the data are supportive that A2aR agonists, acting at the level of peripheral nerve injury, may be of therapeutic value in treating chronic pain of neuroinflammatory origin.


Asunto(s)
Piperidinas/farmacología , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Animales , Citocinas/metabolismo , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inyecciones Espinales/métodos , Masculino , Neuralgia/tratamiento farmacológico , Traumatismos de los Nervios Periféricos , Piperidinas/metabolismo , Agonistas del Receptor Purinérgico P1/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P1/metabolismo , Nervio Ciático/lesiones
17.
Brain Behav Immun ; 82: 432-444, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31542403

RESUMEN

There is growing interest in drug repositioning to find new therapeutic indications for drugs already approved for use in people. Lovastatin is an FDA approved drug that has been used clinically for over a decade as a lipid-lowering medication. While lovastatin is classically considered to act as a hydroxymethylglutaryl (HMG)-CoA reductase inhibitor, the present series of studies reveal a novel lovastatin effect, that being as a Toll-like receptor 4 (TLR4) antagonist. Lovastatin selectively inhibits lipopolysaccharide (LPS)-induced TLR4-NF-κB activation without affecting signaling by other homologous TLRs. In vitro biophysical binding and cellular thermal shift assay (CETSA) show that lovastatin is recognized by TLR4's coreceptor myeloid differentiation protein 2 (MD-2). This finding is supported by molecular dynamics simulations that lovastatin targets the LPS binding pocket of MD-2 and lovastatin binding stabilizes the MD-2 conformation. In vitro studies of BV-2 microglial cells revealed that lovastatin inhibits multiple effects of LPS, including activation of NFkB; mRNA expression of tumor necrosis factor-a, interleukin-6 and cyclo-oxygenase 2; production of nitric oxide and reactive oxygen species; as well as phagocytic activity. Furthermore, intrathecal delivery of lovastatin over lumbosacral spinal cord of rats attenuated both neuropathic pain from sciatic nerve injury and expression of the microglial activation marker CD11 in lumbar spinal cord dorsal horn. Given the well-established role of microglia and proinflammatory signaling in neuropathic pain, these data are supportive that lovastatin, as a TLR4 antagonist, may be productively repurposed for treating chronic pain.


Asunto(s)
Lovastatina/farmacología , Neuralgia/metabolismo , Receptor Toll-Like 4/efectos de los fármacos , Animales , Ciclooxigenasa 2/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Interleucina-1beta/metabolismo , Lovastatina/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Antígeno 96 de los Linfocitos/fisiología , Masculino , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Cultivo Primario de Células , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Anesth Analg ; 128(1): 161-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596097

RESUMEN

BACKGROUND: Opioids are effective postoperative analgesics. Disturbingly, we have previously reported that opioids such as morphine can worsen inflammatory pain and peripheral and central neuropathic pain. These deleterious effects are mediated by immune mediators that promote neuronal hyperexcitability in the spinal dorsal horn. Herein, we tested whether perioperative morphine could similarly prolong postoperative pain in male rats. METHODS: Rats were treated with morphine for 7 days, beginning immediately after laparotomy, while the morphine was tapered in a second group. Expression of genes for inflammatory mediators was quantified in the spinal dorsal horn. In the final experiment, morphine was administered before laparotomy for 7 days. RESULTS: We found that morphine treatment after laparotomy extended postoperative pain by more than 3 weeks (time × treatment: P < .001; time: P < .001; treatment: P < .05). Extension of postoperative pain was not related to morphine withdrawal, as it was not prevented by dose tapering (time × treatment: P = .8; time: P < .001; treatment: P = .9). Prolonged postsurgical pain was associated with increased expression of inflammatory genes, including those encoding Toll-like receptor 4, NOD like receptor protein 3 (NLRP3), nuclear factor kappa B (NFκB), caspase-1, interleukin-1ß, and tumor necrosis factor (P < .05). Finally, we showed that of preoperative morphine, concluding immediately before laparotomy, similarly prolonged postoperative pain (time × treatment: P < .001; time: P < .001; treatment: P < .001). There is a critical window for morphine potentiation of pain, as a 7-day course of morphine that concluded 1 week before laparotomy did not prolong postsurgical pain. CONCLUSIONS: These studies indicate the morphine can have a deleterious effect on postoperative pain. These studies further suggest that longitudinal studies could be performed to test whether opioids similarly prolong postoperative pain in the clinic.


Asunto(s)
Analgésicos Opioides/toxicidad , Hiperalgesia/inducido químicamente , Morfina/toxicidad , Umbral del Dolor/efectos de los fármacos , Dolor Postoperatorio/inducido químicamente , Células del Asta Posterior/efectos de los fármacos , Analgésicos Opioides/administración & dosificación , Animales , Modelos Animales de Enfermedad , Esquema de Medicación , Hiperalgesia/diagnóstico por imagen , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Mediadores de Inflamación/metabolismo , Laparotomía , Masculino , Morfina/administración & dosificación , Dimensión del Dolor , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Dolor Postoperatorio/fisiopatología , Células del Asta Posterior/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
19.
Proc Natl Acad Sci U S A ; 113(24): E3441-50, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247388

RESUMEN

Opioid use for pain management has dramatically increased, with little assessment of potential pathophysiological consequences for the primary pain condition. Here, a short course of morphine, starting 10 d after injury in male rats, paradoxically and remarkably doubled the duration of chronic constriction injury (CCI)-allodynia, months after morphine ceased. No such effect of opioids on neuropathic pain has previously been reported. Using pharmacologic and genetic approaches, we discovered that the initiation and maintenance of this multimonth prolongation of neuropathic pain was mediated by a previously unidentified mechanism for spinal cord and pain-namely, morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflammasomes and associated release of interleukin-1ß (IL-1ß). As spinal dorsal horn microglia expressed this signaling platform, these cells were selectively inhibited in vivo after transfection with a novel Designer Receptor Exclusively Activated by Designer Drugs (DREADD). Multiday treatment with the DREADD-specific ligand clozapine-N-oxide prevented and enduringly reversed morphine-induced persistent sensitization for weeks to months after cessation of clozapine-N-oxide. These data demonstrate both the critical importance of microglia and that maintenance of chronic pain created by early exposure to opioids can be disrupted, resetting pain to normal. These data also provide strong support for the recent "two-hit hypothesis" of microglial priming, leading to exaggerated reactivity after the second challenge, documented here in the context of nerve injury followed by morphine. This study predicts that prolonged pain is an unrealized and clinically concerning consequence of the abundant use of opioids in chronic pain.


Asunto(s)
Dolor Crónico/metabolismo , Inflamasomas/metabolismo , Microglía/metabolismo , Morfina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Dolor Crónico/patología , Dolor Crónico/fisiopatología , Clozapina/análogos & derivados , Clozapina/farmacología , Interleucina-1beta/metabolismo , Masculino , Microglía/patología , Neuralgia/patología , Neuralgia/fisiopatología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/patología , Asta Dorsal de la Médula Espinal/fisiopatología
20.
Eur J Neurosci ; 47(8): 959-967, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29359831

RESUMEN

The degree of behavioural control that an organism has over a stressor is a potent modulator of the stressor's impact; controllable stressors produce none of the neurochemical and behavioural sequelae that occur if the stressor is uncontrollable. Research demonstrating the importance of control and the neural mechanisms responsible has been conducted almost entirely with male rats. It is unknown if behavioural control is stress blunting in females, and whether or not a similar resilience circuitry is engaged. Female rats were exposed to controllable, yoked uncontrollable or no tailshock. In separate experiments, behavioural (juvenile social exploration, fear and shuttle box escape) and neurochemical (activation of dorsal raphe serotonin and dorsal raphe-projecting prelimbic neurons) outcomes, which are sensitive to the dimension of control in males, were assessed. Despite successful acquisition of the controlling response, behavioural control did not mitigate dorsal raphe serotonergic activation and behavioural outcomes induced by tailshock, as it does in males. Moreover, behavioural control failed to selectively engage prelimbic cells that project to the dorsal raphe as in males. Pharmacological activation of the prelimbic cortex restored the stress-buffering effects of control. Collectively, the data demonstrate stressor controllability phenomena are absent in females and that the protective prelimbic circuitry is present but not engaged. Reduced benefit from coping responses may represent a novel approach for understanding differential sex prevalence in stress-related psychiatric disorders.


Asunto(s)
Reacción de Prevención/fisiología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/fisiología , Conducta Exploratoria/fisiología , Miedo/fisiología , Serotonina/metabolismo , Estrés Psicológico/metabolismo , Animales , Electrochoque , Femenino , Lóbulo Límbico/efectos de los fármacos , Microinyecciones , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Picrotoxina/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Estilbamidinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA