RESUMEN
Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 µg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.
Asunto(s)
Productos Biológicos , Plantas Medicinales , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Medicina de Hierbas , Kenia , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis mansoni/tratamiento farmacológicoRESUMEN
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
RESUMEN
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.