RESUMEN
Low levels of N-nitrosamines (NAs) were detected in pharmaceuticals and, as a result, health authorities (HAs) have published acceptable intakes (AIs) in pharmaceuticals to limit potential carcinogenic risk. The rationales behind the AIs have not been provided to understand the process for selecting a TD50 or read-across analog. In this manuscript we evaluated the toxicity data for eleven common NAs in a comprehensive and transparent process consistent with ICH M7. This evaluation included substances which had datasets that were robust, limited but sufficient, and substances with insufficient experimental animal carcinogenicity data. In the case of robust or limited but sufficient carcinogenicity information, AIs were calculated based on published or derived TD50s from the most sensitive organ site. In the case of insufficient carcinogenicity information, available carcinogenicity data and structure activity relationships (SARs) were applied to categorical-based AIs of 1500 ng/day, 150 ng/day or 18 ng/day; however additional data (such as biological or additional computational modelling) could inform an alternative AI. This approach advances the methodology used to derive AIs for NAs.
Asunto(s)
Nitrosaminas , Animales , Nitrosaminas/toxicidad , Carcinógenos , Relación Estructura-Actividad , Preparaciones FarmacéuticasRESUMEN
Peroxisome proliferator-activated receptor α (PPARα) is a transcriptional regulator of lipid metabolism. GW7647 is a potent PPARα agonist that must reach the nucleus to activate this receptor. In cells expressing human fatty acid-binding protein 1 (FABP1), GW7647 treatment increases FABP1's nuclear localization and potentiates GW7647-mediated PPARα activation; GW7647 is less effective in cells that do not express FABP1. To elucidate the underlying mechanism, here we substituted residues in FABP1 known to dictate lipid signaling by other intracellular lipid-binding proteins. Substitutions of Lys-20 and Lys-31 to Ala in the FABP1 helical cap affected neither its nuclear localization nor PPARα activation. In contrast, Ala substitution of Lys-57, Glu-77, and Lys-96, located in the loops adjacent to the ligand-binding portal region, abolished both FABP1 nuclear localization and GW7647-induced PPARα activation but had little effect on GW7647-FABP1 binding affinity. Using solution NMR spectroscopy, we determined the WT FABP1 structure and analyzed the dynamics in the apo and GW7647-bound structures of both the WT and the K57A/E77A/K96A triple mutant. We found that GW7647 binding causes little change in the FABP1 backbone, but solvent exposes several residues in the loops around the portal region, including Lys-57, Glu-77, and Lys-96. These residues also become more solvent-exposed upon binding of FABP1 with the endogenous PPARα agonist oleic acid. Together with previous observations, our findings suggest that GW7647 binding stabilizes a FABP1 conformation that promotes its interaction with PPARα. We conclude that full PPARα agonist activity of GW7647 requires FABP1-dependent transport and nuclear localization processes.
Asunto(s)
Butiratos/farmacología , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , PPAR alfa/agonistas , Compuestos de Fenilurea/farmacología , Butiratos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Humanos , Ligandos , Modelos Moleculares , Mutación , Compuestos de Fenilurea/metabolismo , Conformación Proteica/efectos de los fármacosRESUMEN
Idiosyncratic drug-induced liver injury (IDILI) is a severe disease that cannot be detected during drug development. It has been shown that hepatotoxicity of some compounds associated with IDILI becomes apparent when these are combined in vivo and in vitro with LPS or TNF. Among these compounds trovafloxacin (TVX) induced apoptosis in the liver and increased pro-inflammatory cytokines in mice exposed to LPS/TNF. The hepatocyte survival and the cytokine release after TNF/LPS stimulation relies on a pulsatile activation of NF-κB. We set out to evaluate the dynamic activation of NF-κB in response to TVX + TNF or LPS models, both in mouse and human cells. Remarkably, TVX prolonged the first translocation of NF-κB induced by TNF both in vivo and in vitro. The prolonged p65 translocation caused by TVX was associated with an increased phosphorylation of IKK and MAPKs and accumulation of inhibitors of NF-κB such as IκBα and A20 in HepG2. Coherently, TVX suppressed further TNF-induced NF-κB translocations in HepG2 leading to decreased transcription of ICAM-1 and inhibitors of apoptosis. TVX prolonged LPS-induced NF-κB translocation in RAW264.7 macrophages increasing the secretion of TNF. In summary, this study presents new, relevant insights into the mechanism of TVX-induced liver injury underlining the resemblance between mouse and human models. In this study we convincingly show that regularly used toxicity models provide a coherent view of relevant pathways for IDILI. We propose that assessment of the kinetics of activation of NF-κB and MAPKs is an appropriate tool for the identification of hepatotoxic compounds during drug development.
Asunto(s)
Antibacterianos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Fluoroquinolonas/toxicidad , Lipopolisacáridos/farmacología , Naftiridinas/toxicidad , Factor de Transcripción ReIA/efectos de los fármacos , Factor de Transcripción ReIA/genética , Translocación Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Citocinas/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Beta-lactams allergy is the most commonly reported drug allergy and constitutes an important health problem. We previously showed the pre-existence of a naïve CD4+ T cell repertoire for benzylpenicillin (BP) coupled to human serum albumin (HSA) but little is known about the naïve CD8+ T cell repertoire specific for BP. OBJECTIVE: The purpose of this work was to identify naïve CD8+ T cells specific for BP and to explore mechanisms dictating their activation. METHODS: Co-cultures were established with naïve CD8+ T cells and autologous dendritic cells (DCs) loaded with HSA-BP or free BP. T cells were restimulated once a week with autologous DCs loaded with HSA-BP or BP. The specific CD8+ T cell response was measured using an IFN-γ ELISpot assay. RESULTS: When using free BP, we were able to detect a naïve CD8+ T cell repertoire for BP in the 6 out of 7 tested healthy donors. However, our results showed that HSA-BP was recognized by naïve CD8+ T cells in only one donor out of five tested healthy donors. Using free BP, we evidenced its binding to cellular proteins in DCs that was concentration dependent and was correlated with BP-specific CD8+ T cell activation. Moreover, the BP-specific CD8+ cell response was MHC class I-dependent and required intracellular processing and proteasome activity. CONCLUSION AND CLINICAL RELEVANCE: This work showed the existence of a naïve CD8+ T cell repertoire for BP when DCs were treated with free BP suggesting that patients could be immunized by haptenated peptides from cellular proteins generated in antigen-presenting cells.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Susceptibilidad a Enfermedades , Hipersensibilidad a las Drogas/inmunología , Penicilina G/efectos adversos , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Hipersensibilidad a las Drogas/diagnóstico , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/inmunología , Haptenos , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Complejo de la Endopetidasa Proteasomal/metabolismoRESUMEN
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Pruebas de Toxicidad , Células Cultivadas/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes/metabolismo , Valor Predictivo de las Pruebas , Sensibilidad y EspecificidadRESUMEN
Idiosyncratic drug-induced liver injury (iDILI) has a poorly understood pathogenesis. However, iDILI is often associated with inflammatory stress signals in human patients as well as animal models. Tumor necrosis factor (TNF) and neutrophils play a key role in onset of trovafloxacin (TVX)-induced iDILI, but the exact role of neutrophils and other leukocytes remains to be defined. We therefore set out to study the kinetics of immunological changes during the development of TVX-induced iDILI in the established murine model of acute liver injury induced by administration of TVX and TNF. Initially, TNF stimulated the appearance of leukocytes, in particular neutrophils, into the liver of TVX-treated mice, but even more so in control mice treated with the non-DILI inducing analogue levofloxacin (LVX) or saline as vehicle (Veh). This difference was apparent at 2 hours after TNF administration, but at 4 hours, the relative neutrophil amounts were reduced again in Veh- and LVX-treated mice whereas the amounts in TVX-treated mice remained at the same increased level as at 2 hours. The influx of monocytes/macrophages, which was unaffected in Veh- and LVX-treated mice was markedly reduced or even absent in TVX-treated mice. Unlike controls, mice receiving TVX + TNF display severe hepatotoxicity with clear pathology and apoptosis, coagulated hepatic vessels and increased alanine aminotransferase levels and interleukin 6/10 ratios. Findings indicate that TVX delays the acute influx of neutrophils and monocytes/macrophages. Considering their known anti-inflammatory functions, the disruption of influx of these innate immune cells may hamper the resolution of initial cytotoxic effects of TVX and thus contribute to liver injury development.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fluoroquinolonas/toxicidad , Monocitos/efectos de los fármacos , Naftiridinas/toxicidad , Neutrófilos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/toxicidad , Alanina Transaminasa/sangre , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/sangre , Citometría de Flujo , Leucocitos/efectos de los fármacos , Levofloxacino/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Pruebas de Toxicidad Aguda/métodos , Células Cultivadas , Criopreservación , Células Hep G2/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad Aguda/normasRESUMEN
Intrahepatic cholestasis represents 20%-40% of drug-induced injuries from which a large proportion remains unpredictable. We aimed to investigate mechanisms underlying drug-induced cholestasis and improve its early detection using human HepaRG cells and a set of 12 cholestatic drugs and six noncholestatic drugs. In this study, we analyzed bile canaliculi dynamics, Rho kinase (ROCK)/myosin light chain kinase (MLCK) pathway implication, efflux inhibition of taurocholate [a predominant bile salt export pump (BSEP) substrate], and expression of the major canalicular and basolateral bile acid transporters. We demonstrated that 12 cholestatic drugs classified on the basis of reported clinical findings caused disturbances of both bile canaliculi dynamics, characterized by either dilatation or constriction, and alteration of the ROCK/MLCK signaling pathway, whereas noncholestatic compounds, by contrast, had no effect. Cotreatment with ROCK inhibitor Y-27632 [4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] and MLCK activator calmodulin reduced bile canaliculi constriction and dilatation, respectively, confirming the role of these pathways in drug-induced intrahepatic cholestasis. By contrast, inhibition of taurocholate efflux and/or human BSEP overexpressed in membrane vesicles was not observed with all cholestatic drugs; moreover, examples of noncholestatic compounds were reportedly found to inhibit BSEP. Transcripts levels of major bile acid transporters were determined after 24-hour treatment. BSEP, Na+-taurocholate cotransporting polypeptide, and organic anion transporting polypeptide B were downregulated with most cholestatic and some noncholestatic drugs, whereas deregulation of multidrug resistance-associated proteins was more variable, probably mainly reflecting secondary effects. Together, our results show that cholestatic drugs consistently cause an early alteration of bile canaliculi dynamics associated with modulation of ROCK/MLCK and these changes are more specific than efflux inhibition measurements alone as predictive nonclinical markers of drug-induced cholestasis.
Asunto(s)
Canalículos Biliares/metabolismo , Colestasis Intrahepática/metabolismo , Hígado/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Ácidos y Sales Biliares/metabolismo , Canalículos Biliares/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Línea Celular , Colestasis Intrahepática/inducido químicamente , Humanos , Hígado/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ácido Taurocólico/metabolismoRESUMEN
The current test systems employed by pharmaceutical industry are poorly predictive for drug-induced liver injury (DILI). The 'MIP-DILI' project addresses this situation by the development of innovative preclinical test systems which are both mechanism-based and of physiological, pharmacological and pathological relevance to DILI in humans. An iterative, tiered approach with respect to test compounds, test systems, bioanalysis and systems analysis is adopted to evaluate existing models and develop new models that can provide validated test systems with respect to the prediction of specific forms of DILI and further elucidation of mechanisms. An essential component of this effort is the choice of compound training set that will be used to inform refinement and/or development of new model systems that allow prediction based on knowledge of mechanisms, in a tiered fashion. In this review, we focus on the selection of MIP-DILI training compounds for mechanism-based evaluation of non-clinical prediction of DILI. The selected compounds address both hepatocellular and cholestatic DILI patterns in man, covering a broad range of pharmacologies and chemistries, and taking into account available data on potential DILI mechanisms (e.g. mitochondrial injury, reactive metabolites, biliary transport inhibition, and immune responses). Known mechanisms by which these compounds are believed to cause liver injury have been described, where many if not all drugs in this review appear to exhibit multiple toxicological mechanisms. Thus, the training compounds selection offered a valuable tool to profile DILI mechanisms and to interrogate existing and novel in vitro systems for the prediction of human DILI.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Biología Computacional/métodos , Drogas en Investigación/efectos adversos , Medicina Basada en la Evidencia , Sistemas Especialistas , Hígado/efectos de los fármacos , Modelos Biológicos , Inmunidad Adaptativa/efectos de los fármacos , Animales , Inteligencia Artificial , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Drogas en Investigación/química , Drogas en Investigación/clasificación , Drogas en Investigación/farmacología , Eliminación Hepatobiliar/efectos de los fármacos , Humanos , Hígado/inmunología , Hígado/metabolismo , Hígado/fisiopatología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Índice de Severidad de la EnfermedadRESUMEN
UNLABELLED: Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. CONCLUSION: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients.
Asunto(s)
Hígado Graso/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Lipotrópicos/farmacología , Hígado/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Línea Celular , Receptor de Androstano Constitutivo , Evaluación Preclínica de Medicamentos , Ácidos Grasos no Esterificados/efectos adversos , Hígado Graso/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Enfermedad del Hígado Graso no Alcohólico , Ácido Oléico/efectos adversos , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Oxazoles/farmacología , Oxidación-Reducción , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Triglicéridos/metabolismoRESUMEN
Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD7.0) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1µM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC50 values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico/fisiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Membrana Celular , Humanos , Insectos/citología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , RatasRESUMEN
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Asunto(s)
Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Biomarcadores , Tecnología , Evaluación Preclínica de MedicamentosRESUMEN
To minimize the occurrence of unexpected toxicities in early phase preclinical studies of new drugs, it is vital to understand fundamental similarities and differences between preclinical species and humans. Species differences in sensitivity to acetaminophen (APAP) liver injury have been related to differences in the fraction of the drug that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). We have used physiologically based pharmacokinetic modeling to identify oral doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult. Despite pharmacokinetic and biochemical verification of the equivalent NAPQI insult, serum biomarker and tissue histopathology analyses revealed that mice still exhibited a greater degree of liver injury than rats. Transcriptomic and proteomic analyses highlighted the stronger activation of stress response pathways (including the Nrf2 oxidative stress response and autophagy) in the livers of rats, indicative of a more robust transcriptional adaptation to the equivalent insult. Components of these pathways were also found to be expressed at a higher basal level in the livers of rats compared with both mice and humans. Our findings exemplify a systems approach to understanding differential species sensitivity to hepatotoxicity. Multiomics analysis indicated that rats possess a greater basal and adaptive capacity for hepatic stress responses than mice and humans, with important implications for species selection and human translation in the safety testing of new drug candidates associated with reactive metabolite formation.
Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Ratones , Humanos , Animales , Acetaminofén/toxicidad , Acetaminofén/metabolismo , Proteómica , Especificidad de la Especie , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Análisis de SistemasRESUMEN
Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Valor Predictivo de las PruebasRESUMEN
Current gaps in drug safety sciences can result from the inability (1) to identify hazard across multiple target organs, (2) to predict and risk assess with certainty against drug safety liabilities for the major target organs, (3) to optimally manage and mitigate against drug safety liabilities, and (4) to apply principles of governance on the generation, integration, and use of experimental data. Translational safety assessment to evaluate several target-organ drug toxicities can only be partially achieved by use of current in vitro and in vivo test systems. What remains to be tackled necessitates the deployment of in vitro-human-relevant test systems to address human specific or selective forms of toxicities. Nevertheless, such models may only address in part some of the requirements in today's armament of biomedical tools essential for improving the discovery of drug candidates. Refinement of in silico tools, Target Safety Assessment and a greater understanding of mechanistic insights of toxicities might provide future opportunities to better identify drug safety liabilities. The increasing diversity of drug modalities present further challenges for nonclinical and clinical development requiring further research to develop suitable test systems and technologies. Our ability to optimally manage and mitigate safety risk will come from the greater refinement of safety margin estimates, provision and use of human-relevant safety biomarkers, and understanding of the translation from in silico, in vitro, and in vivo studies to human. An improvement of governance frameworks and standards at all levels within organizations, national, and international, can only help facilitate drug discovery and development programs.
Asunto(s)
Descubrimiento de Drogas/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Biomarcadores , Simulación por Computador , Humanos , Medición de Riesgo , Gestión de RiesgosRESUMEN
Bile acids (BAs) are recognised as the causative agents of toxicity in drug-induced cholestasis (DIC). Research in isolated mitochondria and HepG2 cells have demonstrated BA-mediated mitochondrial dysfunction as a key mechanism of toxicity in DIC. However, HepG2 cells are of limited suitability for DIC studies as they do not express the necessary physiological characteristics. In this study, the mitotoxic potentials of BA mixtures were assessed in isolated mitochondria and a better-suited hepatic model, HepaRG cells. BAs induced structural alterations and a loss of mitochondrial membrane potential (MMP) in isolated mitochondria however, this toxicity did not translate to HepaRG cells. There were no changes in oxygen consumption rate, MMP or ATP levels in glucose and galactose media, indicating that there was no direct mitochondrial toxicity mediated via electron transport chain dysfunction in HepaRG cells. Assessment of key biliary transporters revealed that there was a time-dependent reduction in the expression and activity of multi-drug resistance protein 2 (MRP2), which was consistent with the induction of cytotoxicity in HepaRG cells. Overall, the findings from this study have demonstrated that mitochondrial dysfunction is not a mechanism of BA-induced toxicity in HepaRG cells.
Asunto(s)
Ácidos y Sales Biliares/toxicidad , Mitocondrias/efectos de los fármacos , Línea Celular , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismoRESUMEN
The fluoroquinolone trovafloxacin (TVX) is associated with a high risk of drug-induced liver injury (DILI). Although part of the liver damage by TVX+TNF relies on neutrophils, we have recently demonstrated that liver recruitment of monocytes and neutrophils is delayed by TVX. Here we show that the delayed leukocyte recruitment is caused by a combination of effects which are linked to the capacity of TVX to block the hemichannel pannexin 1. TVX inhibited find-me signal release in apoptotic HepG2 hepatocytes, decelerated freshly isolated human neutrophils toward IL-8 and f-MLF, and decreased the liver expression of ICAM-1. In blood of TVX+TNF-treated mice, we observed an accumulation of activated neutrophils despite an increased MIP-2 release by the liver. Depletion of monocytes and neutrophils caused increased serum concentrations of TNF, IL-6, and MIP-2 in TVX-treated mice as well as in mice treated with the fluoroquinolone levofloxacin, known to have a lower DILI-inducing profile. This supports the idea that early leukocyte recruitment regulates inflammation. In conclusion, disrupted regulation by leukocytes appears to constitute a fundamental step in the onset of TVX-induced liver injury, acting in concert with the capability of TVX to induce hepatocyte cell death. Interference of leukocyte-mediated regulation of inflammation represents a novel mechanism to explain the onset of DILI.
Asunto(s)
Antiinfecciosos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Fluoroquinolonas/toxicidad , Naftiridinas/toxicidad , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Nucleótidos/metabolismo , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Conexinas/metabolismo , Células Hep G2 , Humanos , Inflamación , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Infiltración Neutrófila/inmunología , Neutrófilos/inmunologíaRESUMEN
Investigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, Investigative Toxicology has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic understanding to eventually predict human response. One major goal of Investigative Toxicology is improving preclinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical development are being discarded due to the use of inappropriate animal models. Progress in Investigative Toxicology could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance this field a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology Leaders Forum (ITLF), an open, non-exclusive and pre-competitive group that shares knowledge and experience. The ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an "Investigative Toxicology Think-Tank", which aimed to enhance the interaction with experts from academia and regulatory bodies in the field. Summarizing the topics and discussion of the workshop, this article highlights Investigative Toxicology's position by identifying key challenges and perspectives.
Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/tendencias , Toxicología/tendencias , Alternativas a las Pruebas en Animales , Animales , Simulación por Computador , Industria Farmacéutica , Europa (Continente) , Humanos , Técnicas In Vitro , Medición de RiesgoRESUMEN
We have established the expression patterns of the genes encoding ATP-binding cassette (ABC) transporters and cytochromes P450 (CYPs) at the adult human blood-brain barrier (BBB) using isolated brain microvessels and cortex biopsies from patients with epilepsia or glioma. Microves synaptophysin (neurons) and neuron-glial antigen 2 (NG2) (pericytes). ABCG2 [breast cancer resistance protein (BCRP)] and ABCB1 (MDR1) were the main ABC transporter genes expressed in microvessels, with 20 times more ABCG2 and 25 times more ABCB1 in microvessels than in the cortex. The CYP1B1 isoform represented over 80% of all the CYPs genes detected in microvessels. There were 14 times more CYP1B1 in microvessels than in the cortex, showing that CYP1B1 is mainly expressed at the BBB. p-glycoprotein (ABCB1), BCRP (ABCG2) and CYP1B1 proteins were found in microvessels by western blotting. The expression of genes encoding three transcription factors [pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR)] was also investigated. The AhR gene, involved in the regulation of CYP1B1 expression, was highly expressed in brain microvessels, whereas PXR and CAR genes were almost undetected. This detailed pattern of ABC and CYPs gene expression at the human BBB provides useful information for understanding how their substrates enter the brain.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antígenos/metabolismo , Neoplasias Encefálicas/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Expresión Génica/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Microvasos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoglicanos/metabolismo , ARN Mensajero/metabolismo , Sinaptofisina/metabolismoRESUMEN
Cisplatin exhibits dose-limiting nephrotoxicity in rodents and man. This study investigates the mechanism of cisplatin nephrotoxicity in vivo and in an in vitro model system. Nephrotoxicity was induced in rats (6 mg/kg cisplatin i.p.) and mice (10 mg/kg cisplatin i.p.). Cisplatin administration significantly elevated blood urea nitrogen (BUN) and serum creatinine in male Sprague Dawley rats day 5 post-treatment (BUN Delta+28+/-5 micromol/ml; serum creatinine Delta+108+/-4 nmol/ml, P<0.05) and in male C57BL6 mice day 4 post-treatment (BUN Delta+21+/-4 micromol/ml; serum creatinine Delta+81+/-5 nmol/ml, P<0.05). Nephrotoxicity was confirmed by histological analysis that revealed significant damage to the proximal tubules of cisplatin- versus saline vehicle-treated animals. Inhibition of gamma glutamyltranspeptidase prevented cisplatin nephrotoxicity in Sprague Dawley rats (day 5 BUN Delta+1+/-2 micromol/ml; serum creatinine Delta+8+/-4 nmol/ml) and C57BL6 mice (day 4 BUN Delta+1+/-0.8 micromol/ml; serum creatinine Delta-1+/-2 nmol/ml), but not cellular toxicity in rat proximal tubular (RPT) or human proximal tubular (HPT) cultures. Inhibition of aminopeptidase N (AP-N) or renal dipeptidase (RDP) in male Sprague Dawley rats, or in RPT and HPT cell cultures, did not reduce cisplatin toxicity. In contrast to published findings inhibition of C-S lyase did not prevent the nephrotoxicity of cisplatin in vivo or cellular toxicity in vitro. These data demonstrate that the biotransformation enzymes AP-N, RDP and C-S lyase are not implicated in the metabolism of cisplatin to a nephrotoxic metabolite as has been previously hypothesised. Instead, our data demonstrate that gamma glutamyltranspeptidase is a key enzyme involved in mediating cisplatin nephrotoxicity, which potentially acts to cleave cisplatin-GSH conjugates to a toxic metabolite.