RESUMEN
T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología , Administración Cutánea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase II como Asunto , Femenino , Granuloma/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Adulto JovenRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) poses a significant threat due to its tendency to evade early detection, frequent metastasis, and the subsequent challenges in devising effective treatments. Processes that govern epithelial-mesenchymal transition (EMT) in PDAC hold promise for advancing novel therapeutic strategies. SAMD1 (SAM domain-containing protein 1) is a CpG island-binding protein that plays a pivotal role in the repression of its target genes. Here, we revealed that SAMD1 acts as a repressor of genes associated with EMT. Upon deletion of SAMD1 in PDAC cells, we observed significantly increased migration rates. SAMD1 exerts its effects by binding to specific genomic targets, including CDH2, encoding N-cadherin, which emerged as a driver of enhanced migration upon SAMD1 knockout. Furthermore, we discovered the FBXO11-containing E3 ubiquitin ligase complex as an interactor and negative regulator of SAMD1, which inhibits SAMD1 chromatin-binding genome-wide. High FBXO11 expression in PDAC is associated with poor prognosis and increased expression of EMT-related genes, underlining an antagonistic relationship between SAMD1 and FBXO11. In summary, our findings provide insights into the regulation of EMT-related genes in PDAC, shedding light on the intricate role of SAMD1 and its interplay with FBXO11 in this cancer type.
Asunto(s)
Carcinoma Ductal Pancreático , Transición Epitelial-Mesenquimal , Proteínas F-Box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Receptores de LDL , Animales , Humanos , Cadherinas/metabolismo , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de LDL/genética , Receptores de LDL/metabolismoRESUMEN
Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.
Asunto(s)
Inflamación , Leucemia Mieloide Aguda , Factor de Transcripción AP-1 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Inflamación/genética , Inflamación/metabolismo , Línea Celular Tumoral , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción Activadores/genética , Cromatina/metabolismo , Proliferación Celular , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Células HEK293 , Regulación Leucémica de la Expresión Génica , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADNRESUMEN
The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.
Asunto(s)
Cromatina , Histona Acetiltransferasas , Histonas , Humanos , Cromatina/genética , Islas de CpG/genética , ADN , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , AcetilaciónRESUMEN
The Polycomb repressive complex 2 (PRC2) is an essential chromatin regulatory complex involved in repressing the transcription of diverse developmental genes. PRC2 consists of a core complex; possessing H3K27 methyltransferase activity and various associated factors that are important to modulate its function. During evolution, the composition of PRC2 and the functionality of PRC2 components have changed considerably. Here, we compare the PRC2 complex members of Drosophila and mammals and describe their adaptation to altered biological needs. We also highlight how the PRC2.1 subcomplex has gained multiple novel functions and discuss the implications of these changes for the function of PRC2 in chromatin regulation.
Asunto(s)
Drosophila , Complejo Represivo Polycomb 2 , Animales , Núcleo Celular , Cromatina/genética , Drosophila/genética , Mamíferos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genéticaRESUMEN
The unmethylated CpG island-binding protein SAMD1 is upregulated in many human cancer types, but its cancer-related role has not yet been investigated. Here, we used the hepatocellular carcinoma cell line HepG2 as a cancer model and investigated the cellular and transcriptional roles of SAMD1 using ChIP-Seq and RNA-Seq. SAMD1 targets several thousand gene promoters, where it acts predominantly as a transcriptional repressor. HepG2 cells with SAMD1 deletion showed slightly reduced proliferation, but strongly impaired clonogenicity. This phenotype was accompanied by the decreased expression of pro-proliferative genes, including MYC target genes. Consistently, we observed a decrease in the active H3K4me2 histone mark at most promoters, irrespective of SAMD1 binding. Conversely, we noticed an increase in interferon response pathways and a gain of H3K4me2 at a subset of enhancers that were enriched for IFN-stimulated response elements (ISREs). We identified key transcription factor genes, such as IRF1, STAT2, and FOSL2, that were directly repressed by SAMD1. Moreover, SAMD1 deletion also led to the derepression of the PI3K-inhibitor PIK3IP1, contributing to diminished mTOR signaling and ribosome biogenesis pathways. Our work suggests that SAMD1 is involved in establishing a pro-proliferative setting in hepatocellular carcinoma cells. Inhibiting SAMD1's function in liver cancer cells may therefore lead to a more favorable gene signature.
RESUMEN
Personalized treatment of acute myeloid leukemia (AML) that target individual aberrations strongly improved the survival of AML patients. However, AML is still one of the most lethal cancer diseases of the 21st century, demonstrating the need to find novel drug targets and to explore alternative treatment strategies. Upon investigation of public perturbation data, we identified the transcription factor IRF8 as a novel AML-specific susceptibility gene in humans. IRF8 is upregulated in a subset of AML cells and its deletion leads to impaired proliferation in those cells. Consistently, high IRF8 expression is associated with poorer patients' prognoses. Combining gene expression changes upon IRF8 deletion and the genome-wide localization of IRF8 in the AML cell line MV4-11, we demonstrate that IRF8 directly regulates key signaling molecules, such as the kinases SRC and FAK, the transcription factors RUNX1 and IRF5, and the cell cycle regulator Cyclin D1. IRF8 loss impairs AML-driving signaling pathways, including the WNT, Chemokine, and VEGF signaling pathways. Additionally, many members of the focal adhesion pathway showed reduced expression, providing a putative link between high IRF8 expression and poor prognosis. Thus, this study suggests that IRF8 could serve as a biomarker and potential molecular target in a subset of human AMLs.