Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 77(3): 645-655.e7, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31983508

RESUMEN

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.


Asunto(s)
Proliferación Celular/fisiología , Hierro/metabolismo , Lisosomas/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Células Jurkat , Lisosomas/fisiología , Mitocondrias/metabolismo , Transducción de Señal/genética
2.
Nat Chem Biol ; 16(12): 1351-1360, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32778843

RESUMEN

Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.


Asunto(s)
Cistina/metabolismo , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Tetrahidrofolato Deshidrogenasa/genética , Antineoplásicos/farmacología , Antioxidantes/farmacología , Biopterinas/análogos & derivados , Biopterinas/farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ferroptosis/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Perfilación de la Expresión Génica , Humanos , Células Jurkat , Peroxidación de Lípido/efectos de los fármacos , Metotrexato/farmacología , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tetrahidrofolato Deshidrogenasa/metabolismo , Vitamina E/farmacología
3.
Science ; 382(6672): 820-828, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37917749

RESUMEN

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Asunto(s)
Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Glutatión , Mitocondrias , Proteínas Mitocondriales , Proteínas de Transporte de Fosfato , Glutatión/metabolismo , Homeostasis , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteómica , Retroalimentación Fisiológica , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo , Proteolisis , Células HEK293 , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo
4.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221560

RESUMEN

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Asunto(s)
Axones/patología , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/fisiología , Animales , Axones/enzimología , Caspasa 3/fisiología , Células Cultivadas , Proteínas del Citoesqueleto , Activación Enzimática , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ratones , Ratones Noqueados , Degeneración Nerviosa/enzimología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor trkA/fisiología , Células Receptoras Sensoriales/fisiología , Relación Estructura-Actividad
5.
Nat Genet ; 46(2): 152-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336168

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster. eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.


Asunto(s)
Adenina/análogos & derivados , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Indoles/farmacología , Adenina/farmacología , Análisis de Varianza , Animales , Ataxinas , Proteínas de Unión al ADN/genética , Drosophila melanogaster , Ontología de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Immunoblotting , Inmunohistoquímica , Proteínas Luminiscentes , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/efectos de los fármacos , Proteínas de Unión a Poli(A)/metabolismo , Interferencia de ARN , Retina/metabolismo , Retina/ultraestructura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas , Médula Espinal/citología , Médula Espinal/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA