Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Anal Chem ; 93(23): 8210-8218, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34080855

RESUMEN

Fluorine-containing compounds comprise 20 to 30 percent of all commercial drugs, and the proportion of fluorinated pharmaceuticals is rapidly growing. While magic angle spinning (MAS) NMR spectroscopy is a popular technique for analysis of solid pharmaceutical compounds, fluorine has been underutilized as a structural probe so far. Here, we report a fast (40-60 kHz) MAS 19F NMR approach for structural characterization of fluorine-containing crystalline pharmaceutical compounds at natural abundance, using the antimalarial fluorine-containing drug mefloquine as an example. We demonstrate the utility of 2D 19F-13C and 19F-19F dipolar-coupling-based correlation experiments for 19F and 13C resonance frequency assignment, which permit identification of crystallographically inequivalent sites. The efficiency of 19F-13C cross-polarization and the effect of 1H and 19F decoupling on spectral resolution and sensitivity were evaluated in a broad range of experimental conditions. We further demonstrate a protocol for measuring accurate interfluorine distances based on 1D DANTE-RFDR experiments combined with multispin numerical simulations.


Asunto(s)
Flúor , Preparaciones Farmacéuticas , Cristalografía , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
2.
Anal Chem ; 93(29): 10326-10333, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34259008

RESUMEN

Comprehensive multiphase (CMP) NMR, first described in 2012, combines all of the hardware components necessary to analyze all phases (solid, gel, and solution) in samples in their natural state. In combination with spectral editing experiments, it can fully differentiate phases and study the transfer of chemical species across and between phases, providing unprecedented molecular-level information in unaltered natural systems. However, many natural samples, such as swollen soils, plants, and small organisms, contain water, salts, and ionic compounds, making them electrically lossy and susceptible to RF heating, especially when using high-strength RF fields required to select the solid domains. While dedicated reduced-heating probes have been developed for solid-state NMR, to date, all CMP-NMR probes have been based on solenoid designs, which can lead to problematic sample heating. Here, a new prototype CMP probe was developed, incorporating a loop gap resonator (LGR) for decoupling. Temperature increases are monitored in salt solutions analogous to those in small aquatic organisms and then tested in vivo on Hyalella azteca (freshwater shrimp). In the standard CMP probe (solenoid), 80% of organisms died within 4 h under high-power decoupling, while in the LGR design, all organisms survived the entire test period of 12 h. The LGR design reduced heating by a factor of ∼3, which allowed 100 kHz decoupling to be applied to salty samples with generally ≤10 °C sample heating. In addition to expanding the potential for in vivo research, the ability to apply uncompromised high-power decoupling could be beneficial for multiphase samples containing true crystalline solids that require the strongest possible decoupling fields for optimal detection.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ondas de Radio
3.
Analyst ; 146(14): 4461-4472, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34136891

RESUMEN

Comprehensive multiphase NMR combines the ability to study and differentiate all phases (solids, gels, and liquids) using a single NMR probe. The general goal of CMP-NMR is to study intact environmental and biological samples to better understand conformation, organization, association, and transfer between and across phases/interfaces that may be lost with conventional sample preparation such as drying or solubilization. To date, all CMP-NMR studies have used 4 mm probes and rotors. Here, a larger 7 mm probehead is introduced which provides ∼3 times the volume and ∼2.4 times the signal over a 4 mm version. This offers two main advantages: (1) the additional biomass reduces experiment time, making 13C detection at natural abundance more feasible; (2) it allows the analysis of larger samples that cannot fit within a 4 mm rotor. Chicken heart tissue and Hyalella azteca (freshwater shrimp) are used to demonstrate that phase-based spectral editing works with 7 mm rotors and that the additional biomass from the larger volumes allows detection with 13C at natural abundance. Additionally, a whole pomegranate seed berry (aril) and an intact softgel capsule of hydroxyzine hydrochloride are used to demonstrate the analysis of samples too large to fit inside a conventional 4 mm CMP probe. The 7 mm version introduced here extends the range of applications and sample types that can be studied and is recommended when 4 mm CMP probes cannot provide adequate signal-to-noise (S/N), or intact samples are simply too big for 4 mm rotors.


Asunto(s)
Imagen por Resonancia Magnética , Biomasa , Espectroscopía de Resonancia Magnética
4.
Magn Reson Chem ; 59(2): 99-107, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32761649

RESUMEN

Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone. We report here approximately a fourfold sensitivity enhancement in the natural abundance 13 C spectrum compared with the room temperature conventional solid-state NMR probe. With the advantage of sensitivity enhancement, we have been able to perform natural abundance 15 N cross-polarization magic angle spinning (CPMAS) and two-dimensional (2D) 1 H-13 C heteronuclear correlation (HETCOR) experiments of native collagen within a reasonable timeframe. Due to high sensitivity, 2D 1 H/13 C HETCOR experiments have helped in detecting several short and long-range interactions of native collagen assembly, thus significantly expanding the scope of the method to such challenging biomaterials.


Asunto(s)
Matriz Ósea/química , Colágeno/química , Animales , Isótopos de Carbono/química , Fémur/química , Cabras , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos
5.
Proc Natl Acad Sci U S A ; 113(33): 9187-92, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27489348

RESUMEN

Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Pliegue de Proteína , Protones
6.
Angew Chem Int Ed Engl ; 57(44): 14514-14518, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29989288

RESUMEN

Dipolar recoupling in solid-state NMR is an essential method for establishing correlations between nuclei that are close in space. In applications on protein samples, the traditional experiments like ramped and adiabatic DCP suffer from the fact that dipolar recoupling occurs only within a limited volume of the sample. This selection is dictated by the radiofrequency (rf) field inhomogeneity profile of the excitation solenoidal coil. We employ optimal control strategies to design dipolar recoupling sequences with substantially larger responsive volume and increased sensitivity. We show that it is essential to compensate for additional temporal modulations induced by sample rotation in a spatially inhomogeneous rf field. Such modulations interfere with the pulse sequence and decrease its performance. Using large-scale optimizations we developed pulse schemes for magnetization transfer from amide nitrogen to carbonyl (NCO) as well as aliphatic carbons (NCA). Our experiments yield a signal intensity increased by a factor of 1.5 and 2.0 for NCA and NCO transfers, respectively, compared to conventional ramped DCP sequences. Consistent results were obtained using several biological samples and NMR instruments.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación por Computador
7.
J Chem Phys ; 146(19): 194202, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527462

RESUMEN

We propose two broadband pulse schemes for 14N solid-state magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) that achieves (i) complete population inversion and (ii) efficient excitation of the double-quantum spectrum using low-power single-sideband-selective pulses. We give a comprehensive theoretical description of both schemes using a common framework that is based on the jolting-frame formalism of Caravatti et al. [J. Magn. Reson. 55, 88 (1983)]. This formalism is used to determine for the first time that we can obtain complete population inversion of 14N under low-power conditions, which we do here using single-sideband-selective adiabatic pulses. It is then used to predict that double-quantum coherences can be excited using low-power single-sideband-selective pulses. We then proceed to design a new experimental scheme for double-quantum excitation. The final double-quantum excitation pulse scheme is easily incorporated into other NMR experiments, as demonstrated here for double quantum-single quantum 14N correlation spectroscopy, and 1H-14N dipolar heteronuclear multiple-quantum correlation experiments. These pulses and irradiation schemes are evaluated numerically using simulations on single crystals and full powders, as well as experimentally on ammonium oxalate ((NH4)2C2O4) at moderate MAS and glycine at ultra-fast MAS. The performance of these new NMR methods is found to be very high, with population inversion efficiencies of 100% and double-quantum excitation efficiencies of 30%-50%, which are hitherto unprecedented for the low radiofrequency field amplitudes, up to the spinning frequency, that are used here.

8.
J Biomol NMR ; 62(3): 253-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26078089

RESUMEN

Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Protones
9.
Angew Chem Int Ed Engl ; 53(9): 2438-42, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24474388

RESUMEN

(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H excitation instead of (1)H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Resonancia Magnética Nuclear Biomolecular/métodos , Deuterio/análisis , Conformación Proteica
10.
Biosens Bioelectron ; 252: 116120, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394704

RESUMEN

In recent decades, significant progress has been made in the treatment of heart diseases, particularly in the field of personalized medicine. Despite the development of genetic tests, phenotyping and risk stratification are performed based on clinical findings and invasive in vivo techniques, such as stimulation conduction mapping techniques and programmed ventricular pacing. Consequently, label-free non-invasive in vitro functional analysis systems are urgently needed for more accurate and effective in vitro risk stratification, model-based therapy planning, and clinical safety profile evaluation of drugs. To overcome these limitations, a novel multilayer high-density microelectrode array (HD-MEA), with an optimized configuration of 512 sensing and 4 pacing electrodes on a sensor area of 100 mm2, was developed for the bioelectronic detection of re-entry arrhythmia patterns. Together with a co-developed front-end, we monitored label-free and in parallel cardiac electrophysiology based on field potential monitoring and mechanical contraction using impedance spectroscopy at the same microelectrode. In proof of principle experiments, human induced pluripotent stem cell (hiPS)-derived cardiomyocytes were cultured on HD-MEAs and used to demonstrate the sensitive quantification of contraction strength modulation by cardioactive drugs such as blebbistatin (IC50 = 4.2 µM), omecamtiv and levosimendan. Strikingly, arrhythmia-typical rotor patterns (re-entry) can be induced by optimized electrical stimulation sequences and detected with high spatial resolution. Therefore, we provide a novel cardiac re-entry analysis system as a promising reference point for diagnostic approaches based on in vitro assays using patient-specific hiPS-derived cardiomyocytes.


Asunto(s)
Técnicas Biosensibles , Células Madre Pluripotentes Inducidas , Humanos , Microelectrodos , Arritmias Cardíacas/diagnóstico , Miocitos Cardíacos/fisiología
11.
J Magn Reson ; 355: 107554, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717302

RESUMEN

Automation in solid state NMR (ssNMR) requires appropriate hardware, from rotor loading mechanisms over highly stable rf-transmitters and probe circuitry to automatic tuning and matching capabilities including automatic magic angle adjustment for ssNMR probes. While these hardware capabilities are highly desirable and are, to various degrees, provided by manufacturers, we focus herein on automating experiment setup using radio frequency (rf) fields, which are key parameters in solid state NMR experiments. Specifically, these include spinlock fields during cross polarization (CP), or rf-fields for homo- or heteronuclear spin recoupling or decoupling. Often, these fields have specific relationships to the magic angle spinning (MAS) frequency. Relying on a well-maintained spectrometer, the experiment setup shifts from traditionally required optimization of rf-power values for each element of an experiment sequence to automatically setting all parameters correctly without any need for optimization. The proposed approach allows executing an experiment by reading its rf-amplitude requirements based on the actual MAS rotation frequency just before starting data acquisition, while all other hardware-related parameters are automatically provided through global tables and scripts. Under modest MAS frequencies, no further rf-power optimization is required while providing optimal sensitivity of better than 90% of the optimal signal to noise. Any optional parameter optimization relates only to adjusting rf-nutation frequencies to the requirements of the sample and the sample rotation frequency rather than the spectrometer hardware. Fast MAS CP experiments with MAS frequencies above 40 kHz require a semi-automated setup by optimizing Hartmann-Hahn (HH) matched rf-fields that are synchronously varied relative to the MAS-frequency. This allows for a significant reduction of setup steps by up to one order of magnitude for such experiments, avoiding the traditional grid search for optimal CPMAS conditions. The approach presented here can also be applied to decoupling or recoupling sequences, requiring rotor synchronized rf-fields, reducing the setup to a few steps addressing the spin system's properties rather than the spectrometer hardware. Our approach permits automating all basic solid state NMR experiments for high throughput analytical tasks.

12.
Phys Chem Chem Phys ; 12(37): 11251-62, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20714496

RESUMEN

The mechanosynthesis of highly pure nanocrystalline BaLiF(3) is reported. The product with mean crystallite diameter of about 30 nm was prepared by joint high-energy ball-milling of the two binary fluorides LiF and BaF(2) at ambient temperature. Compared to coarse-grained BaLiF(3) with µm-sized crystallites, which is available via conventional solid-state synthesis at much higher temperatures, the mechanosynthesized product exhibits a drastic increase of ionic conductivity by several orders of magnitude. This is presumably due to structural disorder introduced during milling and to the presence of a large volume fraction of interfacial regions in the nanocrystalline form of BaLiF(3) providing fast diffusion pathways for the charge carriers. Starting from mechanosynthesized nanocrystalline BaLiF(3) it is possible to tune the transport parameters in a well defined way by subsequent annealing. Changes of the electrical response of mechanosynthesized BaLiF(3) during annealing are studied in situ by impedance spectroscopy. The results are compared with those of a structurally well-ordered single crystal which clearly shows extrinsic and intrinsic regions of ionic conduction.


Asunto(s)
Cristalización/métodos , Compuestos de Litio/química , Nanotecnología/métodos , Iones/química , Espectroscopía de Resonancia Magnética , Difracción de Rayos X
13.
J Magn Reson ; 321: 106873, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33221668

RESUMEN

Two-dimensional multiple-quantum MAS (MQMAS) NMR spectroscopy is one of the most widely used solid-state NMR techniques for resolving multiple overlapping central-transition lineshapes for half-integer spin quadrupolar nuclei. In particular when relying on nutation-driven MQ coherence transfers, this technique suffers from low sensitivity that can only be improved by increasing the rf-amplitude of the involved radio-frequency (rf) pulses, which are therefore typically operated at the rf-limit. In such situations, frequently encountered for the three-pulse z-filtered and split-t1 shifted-echo MQMAS NMR sequences, we introduce the advantages of rf-pulses with smoothly truncated amplitude profiles, which we have termed WURST-Amplitude Shaped Pulses (WASPs). When considering the NMR spectrometer hardware, we demonstrate that WASPs feature more suitable properties in comparison to conventional rectangular pulses, enabling a substantial reduction of voltage reflections and transient effects under identical rf-conditions. By employing extensive numerical simulations and experimental validation, we further show that WASPs intrinsically possess a higher potential for nutation-based 3Q excitation involving spin-3/2 and 3Q and 5Q excitation for spin-5/2 quadrupolar nuclei, specifically when large nutation frequencies are available. The concept of smoothly truncating rf-amplitudes is also extended to Fast Amplitude Modulation (FAM) pulses, normally incorporated for rotor-driven 1Q conversion. We additionally evaluate the potential of employing WASPs with peak rf-amplitudes beyond the rf-limit for conventional rectangular rf-pulses.

14.
J Phys Chem B ; 113(2): 416-25, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19093834

RESUMEN

In this contribution, we present an in situ high temperature 27Al and 31P magic angle spinning (MAS) NMR study of binary and ternary phosphate glasses at temperatures above the glass transition temperature TG. For binary phosphate glasses, xK2O-(1 - x)P2O5 and ternary aluminophosphate glasses 30K2O-xAl2O3-(70 -x)P2O5 with 7 < x < 15 dynamic exchange processes between the various phosphate species (and aluminatespecies) present in the glasses could be identified in the temperature range between TG and the maximum achievable temperature Tmax of our high temperature MAS NMR setup, TG < T < Tmax. This observation indicates rapid P-O-P and P-O-Al bond formation and bond breaking in the (alumino)phosphate glasses.From a modeling of the temperature dependence of these exchange processes, the activation energy EA for the corresponding process could be determined. These local bond breaking and making processes are ultimately linked to the macroscopic viscous flow and may indeed form the basic microscopic local step of viscous flow.


Asunto(s)
Compuestos de Aluminio/química , Vidrio , Fosfatos/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética , Estructura Molecular , Transición de Fase , Temperatura
15.
J Phys Chem B ; 111(26): 7529-34, 2007 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-17559257

RESUMEN

We present an in situ high-temperature nuclear magnetic resonance study on the structural changes in aluminophosphate glasses occurring in the temperature range between the glass transition temperature Tg and the crystallization temperature Tc, Tg < T < Tc. Decisive changes in the network organization between Tg and Tc in potassium aluminophosphate glasses in the compositional range 50K2O-xAl2O3-(50 - x)P2O5 with 2.5 < x < 20 could be monitored for the first time employing 1D 31P- and 27Al-MAS NMR. Accompanying ex situ NMR experiments (31P-RFDR NMR and 31P-{27Al} CP-HETCOR NMR) on devitrified samples were performed at room temperature to further characterize the phases formed during the crystallization process. The structural role of boron-which is known to inhibit the crystallization process in these aluminophosphate glasses-on short and intermediate length scales was analyzed employing 11B-MQMAS, 11B-{27Al} TRAPDOR and 11B-{31P} REDOR NMR spectroscopy.


Asunto(s)
Compuestos de Aluminio/química , Vidrio/química , Calor , Espectroscopía de Resonancia Magnética , Fosfatos/química , Cristalización
16.
J Magn Reson ; 284: 20-32, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28946058

RESUMEN

We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

17.
Sci Rep ; 7(1): 7444, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785098

RESUMEN

MAS solid-state NMR is capable of determining structures of protonated solid proteins using proton-detected experiments. These experiments are performed at MAS rotation frequency of around 110 kHz, employing 0.5 mg of material. Here, we compare 1H, 13C correlation spectra obtained from protonated and deuterated microcrystalline proteins at MAS rotation frequency of 111 kHz, and show that the spectral quality obtained from deuterated samples is superior to those acquired using protonated samples in terms of resolution and sensitivity. In comparison to protonated samples, spectra obtained from deuterated samples yield a gain in resolution on the order of 3 and 2 in the proton and carbon dimensions, respectively. Additionally, the spectrum from the deuterated sample yields approximately 2-3 times more sensitivity compared to the spectrum of a protonated sample. This gain could be further increased by a factor of 2 by making use of stereospecific precursors for biosynthesis. Although the overall resolution and sensitivity of 1H, 13C correlation spectra obtained using protonated solid samples with rotation frequencies on the order of 110 kHz is high, the spectral quality is still poor when compared to the deuterated samples. We believe that experiments involving large protein complexes in which sensitivity is limiting will benefit from the application of deuteration schemes.


Asunto(s)
Isótopos de Carbono/química , Deuterio/química , Proteínas/química , Hidrogenación , Resonancia Magnética Nuclear Biomolecular
18.
Solid State Nucl Magn Reson ; 34(1-2): 14-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18378124

RESUMEN

In this contribution we present a constant time version of the well known REDOR pulse sequence which enables us to determine the second moments in multiple spin systems with strong dipolar couplings. From the resulting dipolar evolution curves, accurate values for the second moments can be obtained without the need to incorporate the full information about the detailed spin geometry of the multiple spin systems into the simulation protocol.

19.
Solid State Nucl Magn Reson ; 32(2): 44-52, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17706927

RESUMEN

In this work a combination of complementary advanced solid-state nuclear magnetic resonance (NMR) strategies is employed to analyse the network organization in aluminophosphate glasses to an unprecedented level of detailed insight. The combined results from MAS, MQMAS and (31)P-{(27)Al}-CP-heteronuclear correlation spectroscopy (HETCOR) NMR experiments allow for a detailed speciation of the different phosphate and aluminate species present in the glass. The interconnection of these local building units to an extended three-dimensional network is explored employing heteronuclear dipolar and scalar NMR approaches to quantify P-O-Al connectivity by (31)P{(27)Al}-heteronuclear multiple quantum coherence (HMQC), -rotational echo adiabatic passage double resonance (REAPDOR) and -HETCOR NMR as well as (27)Al{(31)P}-rotational echo double resonance (REDOR) NMR experiments, complemented by (31)P-2D-J-RESolved MAS NMR experiments to probe P-O-P connectivity utilizing the through bond scalar J-coupling. The combination of the results from the various NMR approaches enables us to not only quantify the phosphate units present in the glass but also to identify their respective structural environments within the three-dimensional network on a medium length scale employing a modified Q notation, Q(n)(m),(AlO)(x), where n denotes the number of connected tetrahedral phosphate, m gives the number of aluminate species connected to a central phosphate unit and x specifies the nature of the bonded aluminate species (i.e. 4, 5 or 6 coordinate aluminium).


Asunto(s)
Algoritmos , Compuestos de Aluminio/química , Vidrio/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA