Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38499497

RESUMEN

The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein-protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.


Asunto(s)
Reposicionamiento de Medicamentos , Transcriptoma , Estados Unidos , Reposicionamiento de Medicamentos/métodos , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Biología Computacional/métodos
2.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37580175

RESUMEN

Protein engineering is an emerging field in biotechnology that has the potential to revolutionize various areas, such as antibody design, drug discovery, food security, ecology, and more. However, the mutational space involved is too vast to be handled through experimental means alone. Leveraging accumulative protein databases, machine learning (ML) models, particularly those based on natural language processing (NLP), have considerably expedited protein engineering. Moreover, advances in topological data analysis (TDA) and artificial intelligence-based protein structure prediction, such as AlphaFold2, have made more powerful structure-based ML-assisted protein engineering strategies possible. This review aims to offer a comprehensive, systematic, and indispensable set of methodological components, including TDA and NLP, for protein engineering and to facilitate their future development.


Asunto(s)
Inteligencia Artificial , Ingeniería de Proteínas , Procesamiento de Lenguaje Natural , Anticuerpos , Análisis de Datos
3.
Chem Rev ; 123(13): 8736-8780, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384816

RESUMEN

Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Suministros de Energía Eléctrica , Redes Neurales de la Computación
4.
Biophys J ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356263

RESUMEN

Electrostatics is of paramount importance to chemistry, physics, biology, and medicine. The Poisson-Boltzmann (PB) theory is a primary model for electrostatic analysis. However, it is highly challenging to compute accurate PB electrostatic solvation free energies for macromolecules due to the nonlinearity, dielectric jumps, charge singularity, and geometric complexity associated with the PB equation. The present work introduces a PB-based machine learning (PBML) model for biomolecular electrostatic analysis. Trained with the second-order accurate MIBPB solver, the proposed PBML model is found to be more accurate and faster than several eminent PB solvers in electrostatic analysis. The proposed PBML model can provide highly accurate PB electrostatic solvation free energy of new biomolecules or new conformations generated by molecular dynamics with much reduced computational cost.

5.
J Comput Chem ; 45(6): 306-320, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37830273

RESUMEN

The Poisson-Boltzmann (PB) model is a widely used electrostatic model for biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB model can be numerically solved on either Eulerian meshes using finite difference/finite element methods or Lagrangian meshes using boundary element methods. Molecular surface generators, which produce the discretized dielectric interfaces between solutes and solvents, are critical factors in determining the accuracy and efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and Lagrangian surface representations, which enables us to numerically validate and compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the Lagrangian PB solvers, such as the TABI-PB solver. Furthermore, with the ESES software and its associated PB solvers, we are able to numerically validate an interesting and useful but often neglected source-target symmetric property associated with the linearized PB model.

6.
Small ; 20(5): e2305300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37735143

RESUMEN

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Ratones , Animales , Anisotropía , Diagnóstico por Imagen/métodos , Magnetismo , Fenómenos Magnéticos , Imagen por Resonancia Magnética
7.
J Magn Reson Imaging ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358090

RESUMEN

In recent years, magnetic particle imaging (MPI) has emerged as a promising imaging technique depicting high sensitivity and spatial resolution. It originated in the early 2000s where it proposed a new approach to challenge the low spatial resolution achieved by using relaxometry in order to measure the magnetic fields. MPI presents 2D and 3D images with high temporal resolution, non-ionizing radiation, and optimal visual contrast due to its lack of background tissue signal. Traditionally, the images were reconstructed by the conversion of signal from the induced voltage by generating system matrix and X-space based methods. Because image reconstruction and analyses play an integral role in obtaining precise information from MPI signals, newer artificial intelligence-based methods are continuously being researched and developed upon. In this work, we summarize and review the significance and employment of machine learning and deep learning models for applications with MPI and the potential they hold for the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.

8.
J Chem Inf Model ; 64(7): 2829-2838, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402705

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity in cells, which has given us insights into cell-cell communication, cell differentiation, and differential gene expression. However, analyzing scRNA-seq data is a challenge due to sparsity and the large number of genes involved. Therefore, dimensionality reduction and feature selection are important for removing spurious signals and enhancing the downstream analysis. We present Correlated Clustering and Projection (CCP), a new data-domain dimensionality reduction method, for the first time. CCP projects each cluster of similar genes into a supergene defined as the accumulated pairwise nonlinear gene-gene correlations among all cells. Using 14 benchmark data sets, we demonstrate that CCP has significant advantages over classical principal component analysis (PCA) for clustering and/or classification problems with intrinsically high dimensionality. In addition, we introduce the Residue-Similarity index (RSI) as a novel metric for clustering and classification and the R-S plot as a new visualization tool. We show that the RSI correlates with accuracy without requiring the knowledge of the true labels. The R-S plot provides a unique alternative to the uniform manifold approximation and projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE) for data with a large number of cell types.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Análisis de Componente Principal , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos
9.
J Chem Inf Model ; 64(7): 2405-2420, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37738663

RESUMEN

Over the years, Principal Component Analysis (PCA) has served as the baseline approach for dimensionality reduction in gene expression data analysis. Its primary objective is to identify a subset of disease-causing genes from a vast pool of thousands of genes. However, PCA possesses inherent limitations that hinder its interpretability, introduce class ambiguity, and fail to capture complex geometric structures in the data. Although these limitations have been partially addressed in the literature by incorporating various regularizers, such as graph Laplacian regularization, existing PCA based methods still face challenges related to multiscale analysis and capturing higher-order interactions in the data. To address these challenges, we propose a novel approach called Persistent Laplacian-enhanced Principal Component Analysis (PLPCA). PLPCA amalgamates the advantages of earlier regularized PCA methods with persistent spectral graph theory, specifically persistent Laplacians derived from algebraic topology. In contrast to graph Laplacians, persistent Laplacians enable multiscale analysis through filtration and can incorporate higher-order simplicial complexes to capture higher-order interactions in the data. We evaluate and validate the performance of PLPCA using ten benchmark microarray data sets that exhibit a wide range of dimensions and data imbalance ratios. Our extensive studies over these data sets demonstrate that PLPCA provides up to 12% improvement to the current state-of-the-art PCA models on five evaluation metrics for classification tasks after dimensionality reduction.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Análisis de Componente Principal , Perfilación de la Expresión Génica/métodos , Análisis de Datos , Benchmarking
10.
J Chem Inf Model ; 64(8): 3558-3568, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38572676

RESUMEN

RNA velocity has the ability to capture the cell dynamic information in the biological processes; yet, a comprehensive analysis of the cell state transitions and their associated chemical and biological processes remains a gap. In this work, we provide the Hodge decomposition, coupled with discrete exterior calculus (DEC), to unveil cell dynamics by examining the decomposed curl-free, divergence-free, and harmonic components of the RNA velocity field in a low dimensional representation, such as a UMAP or a t-SNE representation. Decomposition results show that the decomposed components distinctly reveal key cell dynamic features such as cell cycle, bifurcation, and cell lineage differentiation, regardless of the choice of the low-dimensional representations. The consistency across different representations demonstrates that the Hodge decomposition is a reliable and robust way to extract these cell dynamic features, offering unique analysis and insightful visualization of single-cell RNA velocity fields.


Asunto(s)
ARN , Análisis de la Célula Individual , ARN/química , ARN/metabolismo , Humanos
11.
Chem Rev ; 122(13): 11287-11368, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35594413

RESUMEN

Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares
12.
J Comput Appl Math ; 4452024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464901

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a relatively new technology that has stimulated enormous interest in statistics, data science, and computational biology due to the high dimensionality, complexity, and large scale associated with scRNA-seq data. Nonnegative matrix factorization (NMF) offers a unique approach due to its meta-gene interpretation of resulting low-dimensional components. However, NMF approaches suffer from the lack of multiscale analysis. This work introduces two persistent Laplacian regularized NMF methods, namely, topological NMF (TNMF) and robust topological NMF (rTNMF). By employing a total of 12 datasets, we demonstrate that the proposed TNMF and rTNMF significantly outperform all other NMF-based methods. We have also utilized TNMF and rTNMF for the visualization of popular Uniform Manifold Approximation and Projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE).

13.
J Chem Inf Model ; 63(22): 7189-7209, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37956228

RESUMEN

The birth of ChatGPT, a cutting-edge language model-based chatbot developed by OpenAI, ushered in a new era in AI. However, due to potential pitfalls, its role in rigorous scientific research is not clear yet. This paper vividly showcases its innovative application within the field of drug discovery. Focused specifically on developing anticocaine addiction drugs, the study employs GPT-4 as a virtual guide, offering strategic and methodological insights to researchers working on generative models for drug candidates. The primary objective is to generate optimal drug-like molecules with desired properties. By leveraging the capabilities of ChatGPT, the study introduces a novel approach to the drug discovery process. This symbiotic partnership between AI and researchers transforms how drug development is approached. Chatbots become facilitators, steering researchers toward innovative methodologies and productive paths for creating effective drug candidates. This research sheds light on the collaborative synergy between human expertise and AI assistance, wherein ChatGPT's cognitive abilities enhance the design and development of pharmaceutical solutions. This paper not only explores the integration of advanced AI in drug discovery but also reimagines the landscape by advocating for AI-powered chatbots as trailblazers in revolutionizing therapeutic innovation.


Asunto(s)
Desarrollo de Medicamentos , Trastornos Relacionados con Sustancias , Humanos , Descubrimiento de Drogas , Lenguaje , Investigadores
14.
J Chem Inf Model ; 63(1): 335-342, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36577010

RESUMEN

Accurate and reliable forecasting of emerging dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants enables policymakers and vaccine makers to get prepared for future waves of infections. The last three waves of SARS-CoV-2 infections caused by dominant variants, Omicron (BA.1), BA.2, and BA.4/BA.5, were accurately foretold by our artificial intelligence (AI) models built with biophysics, genotyping of viral genomes, experimental data, algebraic topology, and deep learning. On the basis of newly available experimental data, we analyzed the impacts of all possible viral spike (S) protein receptor-binding domain (RBD) mutations on the SARS-CoV-2 infectivity. Our analysis sheds light on viral evolutionary mechanisms, i.e., natural selection through infectivity strengthening and antibody resistance. We forecast that BP.1, BL*, BA.2.75*, BQ.1*, and particularly BN.1* have a high potential to become the new dominant variants to drive the next surge. Our key projection about these variants dominance made on Oct. 18, 2022 (see arXiv:2210.09485) became reality in late November 2022.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Inteligencia Artificial , Anticuerpos
15.
J Chem Inf Model ; 63(5): 1472-1489, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36826415

RESUMEN

Drug addiction is a global public health crisis, and the design of antiaddiction drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug addiction learning (TIDAL) built from integrating multiscale topological Laplacians, deep bidirectional transformer, and ensemble-assisted neural networks (EANNs). Multiscale topological Laplacians are a novel class of algebraic topology tools that embed molecular topological invariants and algebraic invariants into its harmonic spectra and nonharmonic spectra, respectively. These invariants complement sequence information extracted from a bidirectional transformer. We validate the proposed TIDAL framework on 22 drug addiction related, 4 hERG, and 12 DAT data sets, which suggests that the proposed TIDAL is a state-of-the-art framework for the modeling and analysis of drug addiction data. We carry out cross-target analysis of the current drug addiction candidates to alert their side effects and identify their repurposing potentials. Our analysis reveals drug-mediated linear and bilinear target correlations. Finally, TIDAL is applied to shed light on relative efficacy, repurposing potential, and potential side effects of 12 existing antiaddiction medications. Our results suggest that TIDAL provides a new computational strategy for pressingly needed antisubstance addiction drug development.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Trastornos Relacionados con Sustancias , Humanos , Inteligencia Artificial , Algoritmos , Redes Neurales de la Computación , Desarrollo de Medicamentos
16.
Appl Intell (Dordr) ; 53(12): 15727-15746, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38031564

RESUMEN

Machine learning has greatly influenced many fields, including science. However, despite of the tremendous accomplishments of machine learning, one of the key limitations of most existing machine learning approaches is their reliance on large labeled sets, and thus, data with limited labeled samples remains a challenge. Moreover, the performance of machine learning methods often severely hindered in case of diverse data, usually associated with smaller data sets or data associated with areas of study where the size of the data sets is constrained by high experimental cost and/or ethics. These challenges call for innovative strategies for dealing with these types of data. In this work, the aforementioned challenges are addressed by integrating graph-based frameworks, semi-supervised techniques, multiscale structures, and modified and adapted optimization procedures. This results in two innovative multiscale Laplacian learning (MLL) approaches for machine learning tasks, such as data classification, and for tackling data with limited samples, diverse data, and small data sets. The first approach, multikernel manifold learning (MML), integrates manifold learning with multikernel information and incorporates a warped kernel regularizer using multiscale graph Laplacians. The second approach, the multiscale MBO (MMBO) method, introduces multiscale Laplacians to the modification of the famous classical Merriman-Bence-Osher (MBO) scheme, and makes use of fast solvers. We demonstrate the performance of our algorithms experimentally on a variety of benchmark data sets, and compare them favorably to the state-of-art approaches.

17.
J Chem Inf Model ; 62(19): 4629-4641, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36154171

RESUMEN

Directed evolution, a revolutionary biotechnology in protein engineering, optimizes protein fitness by searching an astronomical mutational space via expensive experiments. The cluster learning-assisted directed evolution (CLADE) efficiently explores the mutational space via a combination of unsupervised hierarchical clustering and supervised learning. However, the initial-stage sampling in CLADE treats all clusters equally despite many clusters containing a large portion of non-functional mutations. Recent statistical and deep learning tools enable evolutionary density modeling to access protein fitness in an unsupervised manner. In this work, we construct an ensemble of multiple evolutionary scores to guide the initial sampling in CLADE. The resulting evolutionary score-enhanced CLADE, called CLADE 2.0, efficiently selects a training set within a small informative space using the evolution-driven clustering sampling. CLADE 2.0 is validated by using two benchmark libraries both having 160,000 sequences from four-site mutational combinations. Extensive computational experiments and comparisons with existing cutting-edge methods indicate that CLADE 2.0 is a new state-of-art tool for machine learning-assisted directed evolution.


Asunto(s)
Aprendizaje Automático , Proteínas , Análisis por Conglomerados , Ingeniería de Proteínas/métodos , Proteínas/genética
18.
J Chem Inf Model ; 62(2): 412-422, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34989238

RESUMEN

The latest severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529) has ushered panic responses around the world due to its contagious and vaccine escape mutations. The essential infectivity and antibody resistance of the SARS-CoV-2 variant are determined by its mutations on the spike (S) protein receptor-binding domain (RBD). However, a complete experimental evaluation of Omicron might take weeks or even months. Here, we present a comprehensive quantitative analysis of Omicron's infectivity, vaccine breakthrough, and antibody resistance. An artificial intelligence (AI) model, which has been trained with tens of thousands of experimental data and extensively validated by experimental results on SARS-CoV-2, reveals that Omicron may be over 10 times more contagious than the original virus or about 2.8 times as infectious as the Delta variant. On the basis of 185 three-dimensional (3D) structures of antibody-RBD complexes, we unveil that Omicron may have an 88% likelihood to escape current vaccines. The U.S. Food and Drug Administration (FDA)-approved monoclonal antibodies (mAbs) from Eli Lilly may be seriously compromised. Omicron may also diminish the efficacy of mAbs from AstraZeneca, Regeneron mAb cocktail, Celltrion, and Rockefeller University. However, its impacts on GlaxoSmithKline's sotrovimab appear to be mild. Our work calls for new strategies to develop the next generation mutation-proof SARS-CoV-2 vaccines and antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Inteligencia Artificial , Vacunas contra la COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus , Estados Unidos
19.
J Pharmacokinet Pharmacodyn ; 49(1): 39-50, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34637069

RESUMEN

Quantitative systems pharmacology (QSP) is an important approach in pharmaceutical research and development that facilitates in silico generation of quantitative mechanistic hypotheses and enables in silico trials. As demonstrated by applications from numerous industry groups and interest from regulatory authorities, QSP is becoming an increasingly critical component in clinical drug development. With rapidly evolving computational tools and methods, QSP modeling has achieved important progress in pharmaceutical research and development, including for heart failure (HF). However, various challenges exist in the QSP modeling and clinical characterization of HF. Machine/deep learning (ML/DL) methods have had success in a wide variety of fields and disciplines. They provide data-driven approaches in HF diagnosis and modeling, and offer a novel strategy to inform QSP model development and calibration. The combination of ML/DL and QSP modeling becomes an emergent direction in the understanding of HF and clinical development new therapies. In this work, we review the current status and achievement in QSP and ML/DL for HF, and discuss remaining challenges and future perspectives in the field.


Asunto(s)
Insuficiencia Cardíaca , Farmacología , Calibración , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Aprendizaje Automático , Modelos Biológicos , Farmacología en Red
20.
Genomics ; 113(4): 2158-2170, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34004284

RESUMEN

Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and Brazil have received much attention for their increased infectivity, potentially high virulence, and possible threats to existing vaccines and antibody therapies. The question remains if there are other more infectious variants transmitted around the world. We carry out a large-scale study of 506,768 SARS-CoV-2 genome isolates from patients to identify many other rapidly growing mutations on the spike (S) protein receptor-binding domain (RBD). We reveal that essentially all 100 most observed mutations strengthen the binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indicating the virus evolves toward more infectious variants. In particular, we discover new fast-growing RBD mutations N439K, S477N, S477R, and N501T that also enhance the RBD and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies, while mutations E484K and K417N found in South Africa and Brazilian variants, L452R and E484Q found in India variants, can potentially disrupt the binding between the RBD and many known antibodies. Among these RBD mutations, L452R is also now known as part of the California variant B.1.427. Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines. A list of most likely vaccine escape mutations is given, including S494P, Q493L, K417N, F490S, F486L, R403K, E484K, L452R, K417T, F490L, E484Q, and A475S. Mutation T478K appears to make the Mexico variant B.1.1.222 the most infectious one. Our comprehensive genetic analysis and protein-protein binding study show that the genetic evolution of SARS-CoV-2 on the RBD, which may be regulated by host gene editing, viral proofreading, random genetic drift, and natural selection, gives rise to more infectious variants that will potentially compromise existing vaccines and antibody therapies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Vacunas contra la COVID-19/genética , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/efectos adversos , Humanos , Mutación , Unión Proteica/genética , Mapas de Interacción de Proteínas/genética , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA