Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 33(11): 12602-12615, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31450978

RESUMEN

Protein interactions that stabilize the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the apical membranes of epithelial cells have not yet been fully elucidated. We identified keratin 19 (CK19 or K19) as a novel CFTR-interacting protein. CK19 overexpression stabilized both wild-type (WT)-CFTR and Lumacaftor (VX-809)-rescued F508del-CFTR (where F508del is the deletion of the phenylalanine residue at position 508) at the plasma membrane (PM), promoting Cl- secretion across human bronchial epithelial (HBE) cells. CK19 prevention of Rab7A-mediated lysosomal degradation was a key mechanism in apical CFTR stabilization. Unexpectedly, CK19 expression was decreased by ∼40% in primary HBE cells from homogenous F508del patients with CF relative to non-CF controls. CK19 also positively regulated multidrug resistance-associated protein 4 expression at the PM, suggesting that this keratin may regulate the apical expression of other ATP-binding cassette proteins as well as CFTR.-Hou, X., Wu, Q., Rajagopalan, C., Zhang, C., Bouhamdan, M., Wei, H., Chen, X., Zaman, K., Li, C., Sun, X., Chen, S., Frizzell, R. A., Sun, F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Endocitosis , Queratina-19/metabolismo , Proteolisis , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Células HeLa , Humanos , Queratina-19/genética , Lisosomas/genética , Lisosomas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Estabilidad Proteica
2.
J Mol Cell Cardiol ; 99: 218-229, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26529187

RESUMEN

Up-regulation of desmin has been reported in cardiac hypertrophy and failure but the pathophysiological cause and significance remain to be investigated. By examining genetically modified mouse models representative for diastolic or systolic heart failure, we found significantly increased levels of desmin and α-actinin in the myofibrils of hearts with impaired diastolic function but not hearts with weakened systolic function. The increased desmin and α-actinin are mainly found in myofibrils at the Z-disks. Two weeks of transverse aortic constriction (TAC) induced increases of desmin and α-actinin in mouse hearts of occult diastolic failure but not in wild type or transgenic mouse hearts with mildly lowered systolic function or with increased diastolic function. The chronic or TAC-induced increase of desmin showed no proportional increase in phosphorylation, implicating an up-regulated expression rather than a decreased protein turnover. The data demonstrate a novel early response specifically to diastolic heart failure, indicating a function of the Z-disk in the challenging clinical condition of heart failure with preserved ejection fraction (HFpEF).


Asunto(s)
Actinina/metabolismo , Desmina/metabolismo , Diástole , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Disfunción Ventricular/metabolismo , Adaptación Biológica , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ratones , Sístole , Disfunción Ventricular/diagnóstico , Disfunción Ventricular/etiología , Disfunción Ventricular/fisiopatología
3.
Biochemistry ; 55(12): 1887-97, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26862665

RESUMEN

Cardiac troponin I (cTnI) has a unique N-terminal extension that plays a role in modifying the calcium regulation of cardiac muscle contraction. Restrictive cleavage of the N-terminal extension of cTnI occurs under stress conditions as a physiological adaptation. Recent studies have shown that in comparison with controls, transgenic mouse cardiac myofibrils containing cTnI lacking the N-terminal extension (cTnI-ND) had a lower sensitivity to calcium activation of ATPase, resulting in enhanced ventricular relaxation and cardiac function. To investigate which step(s) of the ATPase cycle is regulated by the N-terminal extension of cTnI, here we studied the calcium dependence of cardiac myosin II ATPase kinetics in isolated cardiac myofibrils. ATP binding and ADP dissociation rates were measured by using stopped-flow spectrofluorimetry with mant-dATP and mant-dADP, respectively. We found that the second-order mant-dATP binding rate of cTnI-ND mouse cardiac myofibrils was 3-fold faster than that of wild-type myofibrils at low Ca(2+) concentrations. The ADP dissociation rate of cTnI-ND myofibrils was positively dependent on calcium concentration, while the wild-type controls were not significantly affected. These data from experiments using native cardiac myofibrils under physiological conditions indicate that modification of the N-terminal extension of cTnI plays a role in the calcium regulation of the kinetics of actomyosin ATPase.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/fisiología , Miofibrillas/metabolismo , Miosina Tipo II/metabolismo , Troponina I/metabolismo , Animales , Calcio/farmacología , Relación Dosis-Respuesta a Droga , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibrillas/efectos de los fármacos , Unión Proteica/fisiología , Troponina I/química
4.
Am J Physiol Cell Physiol ; 308(5): C397-404, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25518962

RESUMEN

Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or ß-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser(23/24) in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca(2+) were not changed, Ca(2+) resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart.


Asunto(s)
Calcio/fisiología , Homeostasis/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Troponina I/biosíntesis , Troponina T/biosíntesis , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Troponina I/genética , Troponina T/genética
5.
J Physiol ; 593(23): 5127-44, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26415898

RESUMEN

Dysferlin is a cell membrane bound protein with a role in the repair of skeletal and cardiac muscle cells. Deficiency of dysferlin leads to limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy. In cardiac muscle, dysferlin is located at the intercalated disc and transverse tubule membranes. Loss of dysferlin causes death of cardiomyocytes, notably in ageing hearts, leading to dilated cardiomyopathy and heart failure in LGM2B patients. To understand the primary pathogenesis and pathophysiology of dysferlin cardiomyopathy, we studied cardiac phenotypes of young adult dysferlin knockout mice and found early myocardial hypertrophy with largely compensated baseline cardiac function. Cardiomyocytes isolated from dysferlin-deficient mice showed normal shortening and re-lengthening velocities in the absence of external load with normal peak systolic Ca(2+) but slower Ca(2+) re-sequestration than wild-type controls. The effects of isoproterenol on relaxation velocity, left ventricular systolic pressure and stroke volume were blunted in dysferlin-deficient mouse hearts compared with that in wild-type hearts. Young dysferlin-deficient mouse hearts expressed normal isoforms of myofilament proteins whereas the phosphorylation of ventricular myosin light chain 2 was significantly increased, implying a molecular response to the impaired lusitropic function. These early phenotypes of diastolic cardiac dysfunction and blunted lusitropic response of cardiac muscle to ß-adrenergic stimulation indicate a novel pathogenic mechanism of dysferlin cardiomyopathy.


Asunto(s)
Diástole , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Miosinas Cardíacas/metabolismo , Células Cultivadas , Disferlina , Corazón/efectos de los fármacos , Corazón/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Cadenas Ligeras de Miosina/metabolismo , Fenotipo
6.
Am J Physiol Cell Physiol ; 307(4): C338-48, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24898585

RESUMEN

We previously reported a point mutation substituting Cys for Arg(111) in the highly conserved troponin T (TnT)-contacting helix of cardiac troponin I (cTnI) in wild turkey hearts (Biesiadecki et al. J Biol Chem 279: 13825-13832, 2004). This dominantly negative TnI-TnT interface mutation decreases the binding affinity of cTnI for TnT, impairs diastolic function, and blunts the ß-adrenergic response of cardiac muscle (Wei et al. J Biol Chem 285: 27806-27816, 2010). Here we further investigate cellular phenotypes of transgenic mouse cardiomyocytes expressing the equivalent mutation cTnI-K118C. Functional studies were performed on single adult cardiomyocytes after recovery in short-term culture from isolation stress. The amplitude of contraction and the velocities of shortening and relengthening were lower in cTnI-K118C cardiomyocytes than wild-type controls. The intracellular Ca(2+) transient was slower in cTnI-K118C cardiomyocytes than wild-type cells. cTnI-K118C cardiomyocytes also showed a weaker ß-adrenergic response. The resting length of cTnI-K118C cardiomyocytes was significantly greater than that of age-matched wild-type cells, with no difference in cell width. The resting sarcomere was not longer, but slightly shorter, in cTnI-K118C cardiomyocytes than wild-type cells, indicating longitudinal addition of sarcomeres. More tri- and quadrinuclei cardiomyocytes were found in TnI-K118C than wild-type hearts, suggesting increased nuclear divisions. Whole-genome mRNA array and Western blots detected an increased expression of leukemia inhibitory factor receptor-ß in the hearts of 2-mo-old cTnI-K118C mice, suggesting a signaling pathway responsible for the potent effect of cTnI-K118C mutation on early remodeling in cardiomyocytes.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Remodelación Ventricular , Agonistas Adrenérgicos beta/farmacología , Animales , Señalización del Calcio , Tamaño de la Célula , Células Cultivadas , Genotipo , Ventrículos Cardíacos/efectos de los fármacos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Transgénicos , Mutación , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Unión Proteica , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Factores de Tiempo , Troponina I/genética , Remodelación Ventricular/efectos de los fármacos
7.
JCI Insight ; 9(6)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358827

RESUMEN

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.


Asunto(s)
Fibrosis Quística , Hepatopatías , Animales , Conejos , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Hepatopatías/complicaciones , Glicósidos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/complicaciones
8.
PNAS Nexus ; 2(1): pgac306, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36712930

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive genetic disease affecting multiple organs. Approximately 30% CF patients develop CF-related liver disease (CFLD), which is the third most common cause of morbidity and mortality of CF. CFLD is progressive, and many of the severe forms eventually need liver transplantation. The mechanistic studies and therapeutic interventions to CFLD are unfortunately very limited. Utilizing the CRISPR/Cas9 technology, we recently generated CF rabbits by introducing mutations to the rabbit CF transmembrane conductance regulator (CFTR) gene. Here we report the liver phenotypes and mechanistic insights into the liver pathogenesis in these animals. CF rabbits develop spontaneous hepatobiliary lesions and abnormal biliary secretion accompanied with altered bile acid profiles. They exhibit nonalcoholic steatohepatitis (NASH)-like phenotypes, characterized by hepatic inflammation, steatosis, and fibrosis, as well as altered lipid profiles and diminished glycogen storage. Mechanistically, our data reveal that multiple stress-induced metabolic regulators involved in hepatic lipid homeostasis were up-regulated in the livers of CF-rabbits, and that endoplasmic reticulum (ER) stress response mediated through IRE1α-XBP1 axis as well as NF-κB- and JNK-mediated inflammatory responses prevail in CF rabbit livers. These findings show that CF rabbits manifest many CFLD-like phenotypes and suggest targeting hepatic ER stress and inflammatory pathways for potential CFLD treatment.

9.
Am J Physiol Cell Physiol ; 303(1): C24-32, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22538236

RESUMEN

Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.


Asunto(s)
Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Troponina T/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Matriz Extracelular/fisiología , Femenino , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Isoformas de Proteínas
10.
Elife ; 112022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35848799

RESUMEN

Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of ß1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of ß1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the ß3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High-resolution immunofluorescence and single-molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to ß-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Diferenciación Celular/fisiología , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta 3/genética
11.
Contact (Thousand Oaks) ; 5: 25152564221125613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147729

RESUMEN

Lipid transfer proteins mediate the exchange of lipids between closely apposed membranes at organelle contact sites and play key roles in lipid metabolism, membrane homeostasis, and cellular signaling. A recently discovered novel family of lipid transfer proteins, which includes the VPS13 proteins (VPS13A-D), adopt a rod-like bridge conformation with an extended hydrophobic groove that enables the bulk transfer of membrane lipids for membrane growth. Loss of function mutations in VPS13A and VPS13C cause chorea acanthocytosis and Parkinson's disease, respectively. VPS13A and VPS13C localize to multiple organelle contact sites, including endoplasmic reticulum (ER) - lipid droplet (LD) contact sites, but the functional roles of these proteins in LD regulation remains mostly unexplored. Here we employ CRISPR-Cas9 genome editing to generate VPS13A and VPS13C knockout cell lines in U-2 OS cells via deletion of exon 2 and introduction of an early frameshift. Analysis of LD content in these cell lines revealed that loss of either VPS13A or VPS13C results in reduced LD abundance under oleate-stimulated conditions. These data implicate two lipid transfer proteins, VPS13A and VPS13C, in LD regulation.

12.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232302

RESUMEN

Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF-like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Animales , Sistemas CRISPR-Cas , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/fisiopatología , Técnicas de Inactivación de Genes , Humanos , Masculino , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Distribución Tisular , Transcriptoma
13.
Am J Physiol Heart Circ Physiol ; 298(1): H152-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19880666

RESUMEN

Heat stress (HS)-induced cardioprotection is associated with the activation of focal adhesion kinase (FAK) and protein kinase B (Akt) in neonatal rat ventricular myocytes (NRVMs), suggesting that stress-induced activation of survival pathways may be important in protecting intact hearts from irreversible injury. The purposes of this study were 1) to examine the subcellular signaling pathways activated by HS and ischemic preconditioning (IP) in intact hearts, 2) to determine whether HS and IP activate an integrated survival pathway similar to that activated by HS in cultured NRVMs, and 3) to determine whether HS and IP reduce lethal cell injury in perfused intact hearts. Adult rat hearts perfused in the Langendorff mode were subjected to 25 min of global ischemia and 30 min of reperfusion (I/R) either 24 h after whole animal HS or following a standard IP protocol. Myocardial signaling was analyzed using Western blot analysis, whereas cell death was assayed by measuring lactate dehydrogenase release into the perfusate and confirmed by light microscopy. Similar to NRVMs, HS performed in the whole animal 24 h before I/R increased phosphorylation of FAK at tyrosine-397 and protein kinase B (Akt) and resulted in protection from cell death. Using IP as a myocardial stress also resulted in an increased phosphorylation/activation of both FAK and Akt and resulted in reduced cell death in adult perfused rat hearts subjected to I/R. In conclusion, 1) myocardial stress caused by whole animal HS activates cytoskeletal-based survival signaling pathways in whole heart tissue and reduces lethal I/R injury and 2) IP activates the same stress-induced survival pathway and the activation correlates with the well-known cardioprotective effect of IP on lethal I/R injury.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Corazón/fisiología , Respuesta al Choque Térmico/fisiología , Precondicionamiento Isquémico Miocárdico , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Western Blotting , Supervivencia Celular/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Masculino , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
14.
Mol Ther Nucleic Acids ; 16: 73-81, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30852378

RESUMEN

Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.

15.
Sci Rep ; 8(1): 4764, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555962

RESUMEN

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Proteínas de la Membrana/metabolismo , Selenoproteínas/metabolismo , Eliminación de Secuencia , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Selenoproteínas/deficiencia , Selenoproteínas/genética
16.
FEBS Open Bio ; 4: 11-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319652

RESUMEN

We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND) is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA) isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults), a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

17.
Am J Physiol Heart Circ Physiol ; 295(2): H561-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18539755

RESUMEN

Heat stress (HS)-induced cardioprotection is associated with increased paxillin localization to the membrane fraction of neonatal rat ventricular myocytes (NRVM). The purpose of this study was 1) to examine the subcellular signaling pathways activated by HS; 2) to determine whether myocardial stress organizes and activates an integrated survival pathway; and 3) to investigate potential downstream cytoprotective proteins activated by HS. After HS, NRVM were subjected to chemical inhibitors (CI) designed to simulate ischemia by inhibiting both glycolysis and mitochondrial respiration. Protein kinase B (AKT) expression (wild type) was increased selectively with an adenoviral vector. Cell signaling was analyzed with Western blot analysis, while oncosis/apoptosis was assayed by measuring Trypan blue exclusion and/or terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. HS increased phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 but did not adversely affect the viability of NRVM before CI. HS increased association between FAK and phosphatidylinositol 3-kinase as well as causing a significant increase in AKT activity. Increased expression of wild-type AKT protected myocytes from both oncotic and apoptotic cell death. Increased expression of a FAK inhibitor, FRNK, reduced AKT phosphorylation in response to HS both at time 0 and after 10 min of CI compared with myocytes expressing empty virus. We conclude that myocardial stress activates cytoskeleton-based signaling pathways that are associated with protection from lethal cell injury.


Asunto(s)
Citoprotección , Quinasa 1 de Adhesión Focal/metabolismo , Calor , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Apoptosis , Western Blotting , Supervivencia Celular , Células Cultivadas , Metabolismo Energético , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Quinasa 2 de Adhesión Focal/metabolismo , Ventrículos Cardíacos/enzimología , Etiquetado Corte-Fin in Situ , Mitocondrias Cardíacas/enzimología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transducción Genética
18.
Am J Physiol Heart Circ Physiol ; 291(2): H638-47, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16565316

RESUMEN

To define better the subcellular mechanism of heat shock (HS)-induced cardioprotection, we examined the effect of HS, as well as selective expression of individual HS proteins (HSPs), on cell injury in neonatal rat ventricular myocytes (NRVM). HS was induced in NRVM by a rapid elevation of temperature to 42 degrees C for 20 min followed by 20-24 h of recovery at 37 degrees C. Other NRVM were infected with a replication-deficient adenovirus encoding HSP27 or HSP70. On the same day, all groups were subjected to metabolic inhibition (MI). Cell injury was assayed by measurement of the percentage of total lactate dehydrogenase released, the percentage of cells staining with trypan blue, or TdT-mediated dUTP nick-end labeling, whereas cell signaling was assayed by immunoblot analysis and coimmunoprecipitation. Before MI, the viability of all treated groups did not differ significantly from control NRVM. HS resulted in a significant increase in HSP70 and HSP27 expression. Infection with either virus caused a significant increase in selective HSP content compared with control NRVM. HS protected NRVM from injury. Selective expression of HSP27 or HSP70 alone was not protective in NRVM, but dual infection with both viral vectors (HSP27 + HSP70) was protective. HS and HSP27 + HSP70 expression caused increased paxillin localization in the membrane fraction, which persisted in response to MI, compared with control NRVM. HS increased the integrin-paxillin-focal adhesion kinase interaction, whereas targeted inhibition of focal adhesion kinase activity abolished the integrin-paxillin association and resulted in an increase in cell death. HS and HSP27 + HSP70 expression increased the association of members of the focal adhesion complex and protected NRVM against irreversible injury. Cytoskeletal-based signaling pathways at focal adhesion junctions may represent a unique pathway of cardioprotection.


Asunto(s)
Supervivencia Celular/fisiología , Citoesqueleto/fisiología , Cardiopatías/fisiopatología , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico/fisiología , Transducción de Señal/fisiología , Adenoviridae/genética , Animales , Animales Recién Nacidos/fisiología , Western Blotting , Muerte Celular/fisiología , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/biosíntesis , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Vectores Genéticos , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Ventrículos Cardíacos/citología , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Inmunoprecipitación , Integrina beta1/genética , Integrina beta1/metabolismo , Miocitos Cardíacos/metabolismo , Unión Proteica/fisiología , Ratas , Fracciones Subcelulares/fisiología , Función Ventricular
19.
Am J Physiol Heart Circ Physiol ; 284(3): H911-8, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12578817

RESUMEN

The transition from reversible to irreversible ischemic injury (ischemia-reperfusion, I/R) occurs coincident with the loss of vinculin, a cytoskeletal protein involved in the attachment of the myofibrils to the sarcolemmal membrane. If the loss of vinculin were critical to the development of I/R, then increased levels of vinculin would be predicted to delay the onset of irreversible injury assuming that the protein is functional and localized to the proper subcellular site. The present study determined whether increased expression of vinculin, specifically in the cytoskeletal compartment, would provide protection from I/R injury. Neonatal rat myocytes were cultured and infected with a newly created replication-deficient adenovirus driving the expression of vinculin. I/R was induced with chemical inhibitors of glycolysis and mitochondrial respiration. Irreversible cell injury was assessed with lactate dehydrogenase (LDH) release. Virus-infected myocytes expressed significantly more vinculin in the cytoskeletal fraction and increased the expression of paxillin but sustained the same amount of injury in response to simulated I/R as control cells (n = 4; P = not significant, paired t-test). Hypothermic I/R (ischemia at 25 degrees C) resulted in a significant reduction in LDH release (P

Asunto(s)
Proteínas del Citoesqueleto/biosíntesis , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Vinculina/biosíntesis , Adenoviridae/genética , Animales , Animales Recién Nacidos , Compartimento Celular/fisiología , Células Cultivadas , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Hipotermia Inducida , L-Lactato Deshidrogenasa/metabolismo , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Paxillin , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Ratas , Fracciones Subcelulares/química , Transfección , Vinculina/análisis , Vinculina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA