RESUMEN
BACKGROUND: Lycium is an economically and ecologically important genus of shrubs, consisting of approximately 70 species distributed worldwide, 15 of which are located in China. Despite the economic and ecological importance of Lycium, its phylogeny, interspecific relationships, and evolutionary history remain relatively unknown. In this study, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of 15 species, including subspecies, of the genus Lycium from China. RESULTS: We sequenced and annotated 15 CPGs in this study. Comparative analysis of these genomes from these Lycium species revealed a typical quadripartite structure, with a total sequence length ranging from 154,890 to 155,677 base pairs (bp). The CPGs was highly conserved and moderately differentiated. Through annotation, we identified a total of 128-132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the junctions of the IRb/LSC region were located in rps19 in all Lycium species, IRb/SSC between the ycf1 and ndhF genes, and SSC/IRa within the ycf1 gene. Sequence variation in the SSC region exceeded that in the IR region. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the 15 Lycium species. Comparative analyses revealed five hotspot regions in the CPG: trnR(UCU), atpF-atpH, ycf3-trnS(GGA), trnS(GGA), and trnL-UAG, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the 15 Lycium species formed a monophyletic group and were divided into two typical subbranches and three minor branches. Molecular dating suggested that Lycium diverged from its sister genus approximately 17.7 million years ago (Mya) and species diversification within the Lycium species of China primarily occurred during the recent Pliocene epoch. CONCLUSION: The divergence time estimation presented in this study will facilitate future research on Lycium, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus.
Asunto(s)
Evolución Molecular , Genoma del Cloroplasto , Lycium , Filogenia , Lycium/genética , Lycium/clasificación , China , Variación GenéticaRESUMEN
BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.
Asunto(s)
MicroARNs , Células Supresoras de Origen Mieloide , ARN Circular , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Quinasas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Exosomas/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismoRESUMEN
Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.
Asunto(s)
Electrodos , Nanopartículas , Shewanella , Transporte de Electrón , Shewanella/metabolismo , Nanopartículas/química , Compuestos de Estaño/química , Técnicas Electroquímicas/métodos , Electroquímica , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Fuentes de Energía BioeléctricaRESUMEN
The serine/threonine/tyrosine kinase 1 (STYK1) is a receptor protein-tyrosine kinase (RPTK)-like molecule that is detected in several human organs. STYK1 plays an important role in promoting tumorigenesis and metastasis in various cancers. By analyzing the expression of RTKs in immune cells in the database of 2013 Immunological Genome Project, we found that STYK1 was principally expressed in NK cells. In order to investigate the function of STYK1, we used CRISPR/Cas9 technology to generate STYK1-deleted mice, we found STYK1 deletion mice have normal number, development, and function of NK cells in spleen and bone marrow in tumor-free resting state. To examine the tumor surveillance of STYK1 in vivo, we utilized a variety of tumor models, including NK cell-specific target cell (ß2M and RMA-S) clearance experiments in vivo, subcutaneous and intravenous injection of B16F10 melanoma model, and the spontaneous breast cancer model MMTV-PyMT. Surprisingly, we discovered that deletion of the oncogenic STYK1 promoted the four-model tumor progression, and we observed a reduction of NK cell accumulation in the tumor tissues of STYK1 deletion mice compared to WT mice. In order to study the mechanism of STYK1 in NK, RNA sequence of STYK1-/- and WT NK have unveiled a disparity in the signaling pathways linked to migration and adhesion in STYK1-/- NK cells. Further analysis of chemokine receptors associated with NK cell migration revealed that STYK1-deficient NK cells exhibited a significant reduction in CCR2 expression. The STYK1 expression was negatively associated with tumor progression in glioma patients. Overall, our study found the expression of STYK1 in NK cell mediates NK cell anti-tumor response through regulating CCR2 and infiltrating into tumor tissue.
Asunto(s)
Movimiento Celular , Células Asesinas Naturales , Proteínas Tirosina Quinasas Receptoras , Receptores CCR2 , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Eliminación de Gen , Células Asesinas Naturales/inmunología , Melanoma Experimental/patología , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/genética , Receptores CCR2/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismoRESUMEN
BACKGROUND: Patients with differentiated thyroid cancer (DTC) usually have an excellent prognosis; however, 5 %-15 % develop radioactive iodine-refractory (RAIR) DTC (RAIR-DTC), which has a poor prognosis and limited treatment options. The aim of the present study was to investigate the clinicopathological characteristics of RAIR-DTC in order to provide clinical evidence for timely prediction of the effects of iodine therapy. METHODS: Clinicopathological data for 44 patients with RAIR-DTC and 50 patients with radioiodine-avid DTC (RAIA-DTC) were retrospectively analyzed. The risk factors for RAIR-DTC were evaluated and a RAIR-DTC prediction model was established. RESULTS: RAIR-DTC showed unique clinicopathological features that differed from those of RAIA-DTC; these included age >55 years, a high-risk histological subtype, a large tumor size, a late TNM stage, calcification, distant metastasis, and more than six metastatic lymph nodes. Patients with RAIR-DTC also developed earlier tumor progression. Binary logistic regression analysis showed that distant metastasis, a high-risk histological subtype, and a maximum tumor diameter of ≥12.5 mm were independent risk factors for RAIR-DTC, and the specificity and sensitivity of a combination of these three parameters for the prediction of RAIR-DTC were 98.0 % and 56.8 %, respectively. Decision curve analysis and the calibration curve revealed that the combined prediction of these three parameters had good repeatability and accuracy. CONCLUSION: The clinicopathological features of DTC can effectively predict the effects of iodine therapy. A combination of distant metastasis, a high-risk histological subtype, and a maximum tumor diameter of ≥12.5 mm showed significantly higher prediction accuracy.
Asunto(s)
Adenocarcinoma , Neoplasias de la Tiroides , Humanos , Persona de Mediana Edad , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/patología , Radioisótopos de Yodo/uso terapéutico , Estudios Retrospectivos , Adenocarcinoma/tratamiento farmacológico , PronósticoRESUMEN
Catalpa bungei originates from China. It is fast-growing and possesses a vertically aligned trunk, rendering it a commendable construction material and a significant economic species. In July 2022, a serious leaf spot occurred in the LanLake farm (surveyed area of about 700 acres) in Nanyang (33°3'23" N, 112°28'50" E), Henan Province, China. The incidence rate of leaf disease reached 54% (n=100). The disease initially manifested as irregular round spots with a yellowish-brown hue, subsequently extending in all directions. Later, the lesion periphery exhibited a darkening effect, leading to yellowing. Twenty diseased leaves were randomly collected and cut into small pieces at the interfaces between infected and healthy tissues. The tissues were sterilized in a solution of 75% ethanol and 1% NaClO for 30 seconds and 1 minute, respectively. After rinsing in sterile water, the pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C for 5 days. A total of 29 purified fungal strains were acquired, exhibiting comparable phenotypes in terms of morphological characteristics. Three strains (QS1-1, QS1-2, and QS1-3) were isolated for subsequent investigations. The colony exhibited abundant aerial mycelium with shades ranging from dark green to grey-brown on the reverse side. To analyze the morphological characteristics of conidia, potato carrot agar (PCA) was used as the culture medium and incubated at 25°C with a 12-hour light/dark cycle. Conidia were obclavate or spheroidal, dark brown, with 3 to 5 transverse septa, and 1 to 4 longitudinal septa, measuring 12.4 to 36.7 × 4.4 to 9.0 µm (n=100), with conical beak lengths ranging from 0 to 4.3 µm. These morphological traits suggested that the pathogen shares similarities with the Alternaria species. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (tef1), glyceraldehyde 3-phosphate dehydrogenase gene (gapdh), and RNA polymerase II second largest subunit (rpb2) were amplified for further molecular identification. The resultant sequences were submitted to GenBank with the following accession numbers: OR733559, OR742124, OR761873 (ITS), OR939796, OR939797, OR939798 (tef1), OR939801, OR939802, OR939803 (gapdh), and PP054846, PP054847, PP054848 (rpb2). A Phylogenetic tree was constructed of combined genes (ITS, tef1, gapdh, and rpb2) of sequences, alongside the sequences of the type strains by the neighbor-joining method. The three strains formed a clade with the strains CBS 121456 of Alternaria alternata in phylogenetic trees, being separated from other Alternaria spp. The morphological features and molecular analyses supported the strains as members of Alternaria alternata (Woudenberg et al. 2015). To validate pathogenicity, a conidial suspension (106 conidia ml-1) of all three strains was inoculated onto three healthy leaves of five seedlings, with 50 µl of inoculum absorbed with cotton balls. Another group of five plants received sterile water as a control. All plants were incubated in a climate chamber at 28°C and 90% relative humidity. Four days post-inoculation, lesions resembling natural phenomena were observed, whereas control plants showed no symptoms. Subsequent reisolation produced cultures that were morphologically and molecularly identical to the original strains, fulfilling Koch's postulates. Stem canker of C. bungei caused by Phytophthora nicotianae has been reported in China (Chang et al. 2022). This is the first report of A. alternata causing leaf spots on C. bungei in China. Further research is required on management options to control this disease and the host range still needs to be clarified for accurate disease management.
RESUMEN
Boron-based nonmetallic materials (such as B2O3 and BN) emerge as promising catalysts for selective oxidation of light alkanes by O2 to form value-added products, resulting from their unique advantage in suppressing CO2 formation. However, the site requirements and reaction mechanism of these boron-based catalysts are still in vigorous debate, especially for methane (the most stable and abundant alkane). Here, we show that hexagonal BN (h-BN) exhibits high selectivities to formaldehyde and CO in catalyzing aerobic oxidation of methane, similar to Al2O3-supported B2O3 catalysts, while h-BN requires an extra induction period to reach a steady state. According to various structural characterizations, we find that active boron oxide species are gradually formed in situ on the surface of h-BN, which accounts for the observed induction period. Unexpectedly, kinetic studies on the effects of void space, catalyst loading, and methane conversion all indicate that h-BN merely acts as a radical generator to induce gas-phase radical reactions of methane oxidation, in contrast to the predominant surface reactions on B2O3/Al2O3 catalysts. Consequently, a revised kinetic model is developed to accurately describe the gas-phase radical feature of methane oxidation over h-BN. With the aid of in situ synchrotron vacuum ultraviolet photoionization mass spectroscopy, the methyl radical (CH3â¢) is further verified as the primary reactive species that triggers the gas-phase methane oxidation network. Theoretical calculations elucidate that the moderate H-abstraction ability of predominant CH3⢠and CH3OO⢠radicals renders an easier control of the methane oxidation selectivity compared to other oxygen-containing radicals generally proposed for such processes, bringing deeper understanding of the excellent anti-overoxidation ability of boron-based catalysts.
RESUMEN
A series of tetrahydrothienopyridine derivatives have been designed, synthesized, and evaluated as selective BChE inhibitors. Compounds were analyzed via HRMS, 1H NMR, and 13C NMR. The inhibitory effects were evaluated according to the method of Ellman et al. 6n was the most potent and selective inhibitor against BChE (eeAChE IC50 = 686.4 ± 478.6 µM, eqBChE IC50 = 10.5 ± 5.0 nM, SI = 6.5*104, hBChE IC50 = 32.5 ± 6.5 nM). Cell-based assays have confirmed the low neurotoxicity of 6a and 6n and their moderate neuroprotective effects. Compounds 6a and 6n provide novel chemical entities for the treatment of Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/química , Simulación del Acoplamiento MolecularRESUMEN
To investigate the flavor changes in goat meat upon storage, the volatile components observed in goat meat after different storage periods were determined using gas chromatography-ion mobility spectrometry (GC-IMS). A total of 38 volatile organic compounds (VOCs) were determined from the goat meat samples, including alcohols, ketones, aldehydes, esters, hydrocarbons, ethers, and amine compounds. 1-Hexanol, 3-Hydroxy-2-butanone, and Ethyl Acetate were the main volatile substances in fresh goat meat, and they rapidly decreased with increasing storage time and can be used as biomarkers for identifying fresh meat. When combined with the contents of total volatile basic-nitrogen (TVB-N) and the total numbers of bacterial colonies observed in physical and chemical experiments, the characteristic volatile components of fresh, sub-fresh, and spoiled meat were determined by principal component analysis (PCA). This method will help with the detection of fraudulent production dates in goat meat sales.
Asunto(s)
Espectrometría de Movilidad Iónica , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica/métodos , Alcoholes/análisis , Aldehídos/análisis , Carne/análisis , Compuestos Orgánicos Volátiles/análisisRESUMEN
BACKGROUND: Janus-activated kinase-1 (JAK1) plays a crucial role in many aspects of cell proliferation, differentiation, apoptosis and immune regulation. However, correlations of JAK1 with prognosis and immune infiltration in NSCLC have not been documented. METHODS: We analyzed the relationship between JAK1 expression and NSCLC prognosis and immune infiltration using multiple public databases. RESULTS: JAK1 expression was significantly decreased in NSCLC compared with that in paired normal tissues. JAK1 overexpression indicated a favourable prognosis in NSCLC. In subgroup analysis, high JAK1 expression was associated with a preferable prognosis in lung adenocarcinoma (OS: HR, 0.74, 95% CI from 0.58 to 0.95, log-rank P = 0.017), not squamous cell carcinoma. In addition, data from Kaplan-Meier plotter revealed that JAK1 overexpression was associated with a preferable prognosis in male and stage N2 patients and patients without distant metastasis. Notably, increased levels of JAK1 expression were associated with an undesirable prognosis in patients with stage 1 (OS: HR, 1.46, 95% CI from 1.06 to 2.00, P = 0.02) and without lymph node metastasis (PFS: HR, 2.18, 95% CI from 1.06 to 4.46, P = 0.029), which suggests that early-stage NSCLC patients with JAK1 overexpression may have a bleak prognosis. Moreover, multiple immune infiltration cells, including NK cells, CD8 + T and CD4 + T cells, B cells, macrophages, neutrophils, and dendritic cells (DCs), in NSCLC were positively correlated with JAK1 expression. Furthermore, diverse immune markers are associated with JAK1 expression. CONCLUSIONS: JAK1 overexpression exhibited superior prognosis and immune infiltration in NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Janus Quinasa 1/genética , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Linfocitos Infiltrantes de Tumor , MasculinoRESUMEN
Diagnosis and treatment at an early stage may improve survival of non-small-cell lung cancer (NSCLC). Previous studies have found that long noncoding RNA growth arrest-specific transcript 5 (GAS5) is essential to cancer progression. However, the expression and diagnostic value of GAS5 in exosomes (Exo-GAS5) remain unclear. One hundred and four participants were enrolled, including subjects with NSCLC (n = 64) and healthy subjects ( n = 40). The total Exosome Isolation Kit was applied to isolate exosomes from serum. Total RNA was extracted and the AS5 expression was analyzed using quantitative reverse transcription polymerase chain reaction. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic value of Exo-GAS5 in NSCLC. Our data indicated that the Exo-GAS5 was downregulated in patients with NSCLC compared with healthy controls ( p < 0.001). Furthermore, patients with NSCLC with larger tumor size ( p = 0.025) and advanced TNM (T: extent of the primary tumor; N: lymph node involvement; M: metastatic disease) classification ( p = 0.047) showed lower Exo-GAS5 expression. ROC curve analysis using Exo-GAS5 combined with carcinoembryonic antigen showed an area under curve (AUC) of 0.929. Exo-GAS5 could be used to distinguish patients with Stage I NSCLC with an AUC of 0.822. In conclusion, Exo-GAS5 may function as an ideal noninvasive serum-based marker for identifying patients with early NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Exosomas/metabolismo , Neoplasias Pulmonares/sangre , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , Anciano , Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estudios de Casos y Controles , Exosomas/genética , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/genéticaRESUMEN
There are distinct symptoms for attention deficit hyperactivity disorder (ADHD) at different ages. To explore the developmental mechanism of ADHD from childhood to adolescence, patients from different age groups with ADHD drawn from a large dataset should be investigated. In this study, we hypothesized that there are significant differences in the developmental patterns of local and global brain activities between ADHD and typically developing (TD) individuals. Three voxel-based measurements and the functional connectivity (FC) of the brain networks were extracted from resting-state functional magnetic resonance imaging (fMRI) of both ADHD and TD participants 7-16 years of age. The topological properties of brain networks in both groups were also analyzed, including hubs, hemispheric symmetry, together with local and global efficiency. The results showed, from the local perspective, that the ADHD group had abnormal amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation, and regional homogeneity in the medial orbital frontal cortex, anterior cingulate cortex, postcentral gyrus, thalamus, precuneus, and cerebellum compared with the TD group. From the global perspective, the aberrant FC between multiple networks, such as the default mode network (DMN), the attention network, and the executive control network, might directly contribute to symptom differences in childhood and adolescence in ADHD patients. Finally, from the developmental perspective, there was delayed maturation of brain networks in the ADHD group, especially in the DMN. Overall, we presented the differences in brain networks between the ADHD and TD group from multiple perspectives and demonstrated the developmental abnormality of brain networks in ADHD patients, contributing to the study of the etiology of ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Mapeo Encefálico , Giro del Cíngulo/fisiopatología , Imagen por Resonancia Magnética , Vías Nerviosas/fisiopatología , Adolescente , Atención/fisiología , Mapeo Encefálico/métodos , Cerebelo/fisiopatología , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Adulto JovenRESUMEN
In this study, we assembled high-quality chloroplast genomes of Mandragora caulescens through a reference-guided approach using high-throughput Illumina sequencing reads. The resulting chloroplast genome assembly displayed a typical quadripartite structural organization, comprising a large single-copy (LSC) region of 85,233 bp, two inverted repeat (IR) regions of 25,685 bp each, and a small single-copy (SSC) region of 18,207 bp. The chloroplast genome harbored 141 complete genes, and its overall GC content was 38.0%. In maximum-likelihood (ML) and Bayesian inference (BI) trees, the 19 Solanaceae species formed a monophyletic group, dividing into two main clades. M. caulescens and Nicandra physalodes formed a monophyletic group, suggesting a close relationship between the two species. The M. caulescens cp genome presented in this study lays a good foundation for further genetic and genomic studies of the Solanaceae.
RESUMEN
The aggregation behavior of two amphiphilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-lauryl methacrylate] (H-[P(OEGMA-co-LMA)]) at the air/water interface was investigated by using the Langmuir film balance technique and atomic force microscopy (AFM). At the air/water interface, H-[P(OEGMA-co-LMA)] copolymers spontaneously form the ultrafine network-like monolayer structures of micelles; each micelle consists of a tiny hydrophobic core of one or two carbon backbones and lauryl side groups and a short hydrophilic shell of oligo(ethylene glycol) (OEG) side groups, and the micellar cores are connected by the branching agent ethylene glycol dimethacrylate (EGDMA). These ultrafine micellar structures are successfully revealed by our relative aggregation number method presented in this work, which is based on our previous relative mass method and methylene number method. The surface pressure-molecular area isotherms of POEGMA29%-PLMA71% (weight percent) and POEGMA69%-PLMA31% are condensed and expanded, respectively, because the density/number of OEG side groups in the former shells is smaller than that in the latter case. Upon monolayer compression, the isotherms of the former are classified into regions I-IV, whereas those of the latter are classified into regions II and III based on their different variation trends of surface pressure. Subphase pH has little influence on the isotherms of the two copolymers because the stretching degrees of hydrophilic OEG side groups in the shells are probably limited by the connected cores, which is different from the large effects in our previous block copolymers containing POEGMA or poly[oligo(ethylene glycol) acrylate] blocks. Under neutral and alkaline conditions, in region III, the mean molecular area (mmA) values of the isotherms of the two copolymers at 20 °C are smaller than those at 10 °C due to the collapse of the OEG side groups above 15 °C. Furthermore, the isotherms of POEGMA69%-PLMA31% move to larger mmA values at 30 °C due to the increased thermal mobility and stretching degrees of more OEG side groups.
RESUMEN
This study conducts a rapid health technology assessment to systematically evaluate the effectiveness, safety, and cost-effectiveness of Cerebrolysin as an adjunctive therapy for acute ischemic stroke to provide evidence-based medicine for clinical decisions of Cerebrolysin. All systematic reviews/meta-analyses, pharmacoeconomic studies, and health technology assessment reports of Cerebrolysin for the treatment of acute ischemic stroke before August 17, 2023, were retrieved from PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang, Weipu, Sinomed database and the official website of health technology assessment. According to the inclusion and exclusion criteria, 2 researchers independently carried out screening, data extraction, and quality evaluation and descriptively analyzed the results of the included studies. A total of 14 pieces of literature were incorporated, comprising 8 systematic reviews/meta-analyses and 6 pharmacoeconomic studies. In terms of effectiveness, compared to control groups, the use of Cerebrolysin as a treatment for acute ischemic stroke demonstrates certain advantages, including enhancement in total efficacy rate, neurological function, upper limb motor dysfunction, and facilitation of the recovery of activities of daily living. Especially in patients with moderate to severe acute ischemic stroke, Cerebrolysin has demonstrated the ability to enhance neurological function recovery and ameliorate disabilities. Regarding safety, adverse reactions were mild or comparable to those in the control group. The primary findings of economic studies reveal that advocating for the use of Cerebrolysin offers certain cost-effectiveness advantages. Cerebrolysin contributes to improved clinical efficacy and evaluation indexes while demonstrating favorable safety and economic benefits.
Asunto(s)
Aminoácidos , Análisis de Costo-Efectividad , Accidente Cerebrovascular Isquémico , Humanos , Aminoácidos/uso terapéutico , Aminoácidos/economía , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/economía , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/economía , Fármacos Neuroprotectores/efectos adversos , Evaluación de la Tecnología Biomédica/métodos , Resultado del Tratamiento , Revisiones Sistemáticas como AsuntoRESUMEN
The improvement of nutrients in soil is essential for using deserts and decertified ecosystems and promoting sustainable agriculture. Grapevines are suitable crops for desert soils as they can adapt to harsh environments and effectively impact soil nutrients; however, the mechanisms underlying this remain unclear. This study explored the impact of the different duration(3, 6, and 10 years) of grape cultivation on soil organic carbon, physicochemical properties, enzyme activities, microbial communities, and carbon cycle pathways in both rhizosphere and bulk soils. Partial least squares path modeling was used to further reveal how these factors contributed to soil nutrient improvement. Our findings indicate that after long-term grape cultivation six years, soil organic carbon, total nitrogen, total phosphorus, microbial biomass carbon and nitrogen, and enzyme activities has significantly increased in both rhizosphere and bulk soils but microbial diversity decreased in bulk soil. According to the microbial community assembly analysis, we found that stochastic processes, particularly homogenizing dispersal, were dominant in both soils. Bacteria are more sensitive to environmental changes than fungi. In the bulk soil, long-term grape cultivation leads to a reduction in ecological niches and an increase in salinity, resulting in a decrease in soil microbial diversity. Soil enzymes play an important role in increasing soil organic matter in bulk soil by decomposing plant litters, while fungi play an important role in increasing soil organic matter in the rhizosphere, possibly by decomposing fine roots and producing mycelia. Our findings enhance understanding of the mechanisms of soil organic carbon improvement under long-term grape cultivation and suggest that grapes are suitable crops for restoring desert ecosystems.
RESUMEN
OBJECTIVE: Long non-coding RNA (lncRNA), especially RNA associated with lymph node metastasis, plays an important role in the development of cancer. Identifying metastasis related lncRNAs and exploring their clinical significance can guide the treatment and prognosis of thyroid cancer patients. METHODS: RNA expression and clinical data of thyroid cancer was derived from The Cancer Genome Atlas (TCGA) database, while the survival data was obtained from the ULCAN database. R language and SPSS software were used to analyze the correlation between lncRNA and lymph node metastasis of thyroid cancer and the lncRNAs associated with lymph node metastasis were screened. RESULT: 10 lncRNAs showed significant differential expression in thyroid cancer with and without lymph node metastasis. Four lncRNAs (LRRC52-AS1, AP002358.1, AC004847.1, and AC254633.1) were overexpressed in metastatic thyroid cancer, while six lncRNAs (SLC26A4-AS1, LINC01886, LINC01789, AF131216.3, AC062015.1, and AL031710.1) were underexpressed. The expression levels of these lncRNAs were associated with the clinical staging of tumors. Cox regression analysis further showed that elevated expression levels of AP002358.1 and LRRC52-AS1 were associated with poor prognosis in patients with thyroid cancer. In addition, analysis of the UALCAN database indicated that these two lncRNAs were significantly overexpressed in thyroid cancer compared to other cancers, and the expression levels of AF131216.3 and AL031710.1 were associated with progression-free survival in thyroid cancer patients. CONCLUSION: These lncRNAs may play crucial roles in the development and progression of thyroid cancer and could serve as potential markers for predicting tumor metastasis, clinical stage, and patient prognosis.
Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Tiroides , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metástasis Linfática/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , MicroARNs/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica/genéticaRESUMEN
Leukocyte counts and ratios are independent biomarkers to determine the severity and prognosis of acute ischemic stroke (AIS). In AIS, the connection between leukocytes and large vessel occlusion (LVO) is uncertain. This study aims to determine the relationship between the existence of LVO and leukocyte counts and ratios on admission to AIS. Patients were retrospectively evaluated within six hours of AIS starting between January 2019 and April 2023. On admission, blood specimens were collected, and leukocyte subtype counts were promptly analyzed. Computed tomography or digital subtraction angiography were utilized to verify the existence of LVO. Regression analysis and receiver operating characteristic (ROC) curves were employed to investigate the connections between the counts and ratios of leukocytes and the existence of LVO, as well as the discriminatory ability of these variables in predicting LVO. Total white blood cell (WBC) count, neutrophil count, and neutrophil-to-lymphocyte ratio (NLR) were substantially higher in the LVO existence group compared to the LVO absence group, whereas the ratio of eosinophils to neutrophils (ENRâ ×â 102) was lower (Pâ <â .001, respectively). Significant associations were observed between total WBC counts, neutrophil counts, NLR, and ENRâ ×â 102 and the existence of LVO (Pâ <â .001, respectively). Total WBC counts, neutrophil counts, NLR, and ENRâ ×â 102 had respective areas under the curves (AUC) of 0.730, 0.748, 0.704, and 0.680 for identifying LVO. Our results show that in AIS patients, the existence of LVO is independently associated with elevated total WBC and neutrophil counts, high NLR, and low ENRâ ×â 102 levels. Neutrophil and total WBC counts, as well as NLR and levels of ENRâ ×â 102, may serve as potential biomarkers for predicting LVO. Neuroinflammation, based on the existence of LVO, should be given particular attention in future investigations.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones , Isquemia Encefálica/complicaciones , Recuento de Leucocitos , Linfocitos , Neutrófilos , BiomarcadoresRESUMEN
Bio-photoelectrochemical cell (BPEC) is an emerging technology that can convert the solar energy into electricity or chemicals. However, traditional BPEC depending on abiotic electrodes is challenging for microbial/enzymatic catalysis because of the inefficient electron exchange. Here, electroactive bacteria (Shewanella loihica PV-4) were used to reduce graphene oxide (rGO) nanosheets and produce co-assembled rGO/Shewanella biohydrogel as a basic electrode. By adsorbing chlorophyll contained thylakoid membrane, this biohydrogel was fabricated as a photoanode that delivered maximum photocurrent 126 µA/cm3 under visible light. Impressively, the biohydrogel could be served as a cathode in BPEC by forming coculture system with genetically edited Clostridium ljungdahlii. Under illumination, the BPEC with above photoanode and cathode yielded â¼ 5.4 mM butyrate from CO2 reduction, 169 % increase compared to dark process. This work provided a new strategy (nanotechnology combined with synthetic biology) to achieve efficient bioelectricity and valuable chemical production in PBEC.