Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 59(4): 1409-1422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37504495

RESUMEN

BACKGROUND: Weakly supervised learning promises reduced annotation effort while maintaining performance. PURPOSE: To compare weakly supervised training with full slice-wise annotated training of a deep convolutional classification network (CNN) for prostate cancer (PC). STUDY TYPE: Retrospective. SUBJECTS: One thousand four hundred eighty-nine consecutive institutional prostate MRI examinations from men with suspicion for PC (65 ± 8 years) between January 2015 and November 2020 were split into training (N = 794, enriched with 204 PROSTATEx examinations) and test set (N = 695). FIELD STRENGTH/SEQUENCE: 1.5 and 3T, T2-weighted turbo-spin-echo and diffusion-weighted echo-planar imaging. ASSESSMENT: Histopathological ground truth was provided by targeted and extended systematic biopsy. Reference training was performed using slice-level annotation (SLA) and compared to iterative training utilizing patient-level annotations (PLAs) with supervised feedback of CNN estimates into the next training iteration at three incremental training set sizes (N = 200, 500, 998). Model performance was assessed by comparing specificity at fixed sensitivity of 0.97 [254/262] emulating PI-RADS ≥ 3, and 0.88-0.90 [231-236/262] emulating PI-RADS ≥ 4 decisions. STATISTICAL TESTS: Receiver operating characteristic (ROC) and area under the curve (AUC) was compared using DeLong and Obuchowski test. Sensitivity and specificity were compared using McNemar test. Statistical significance threshold was P = 0.05. RESULTS: Test set (N = 695) ROC-AUC performance of SLA (trained with 200/500/998 exams) was 0.75/0.80/0.83, respectively. PLA achieved lower ROC-AUC of 0.64/0.72/0.78. Both increased performance significantly with increasing training set size. ROC-AUC for SLA at 500 exams was comparable to PLA at 998 exams (P = 0.28). ROC-AUC was significantly different between SLA and PLA at same training set sizes, however the ROC-AUC difference decreased significantly from 200 to 998 training exams. Emulating PI-RADS ≥ 3 decisions, difference between PLA specificity of 0.12 [51/433] and SLA specificity of 0.13 [55/433] became undetectable (P = 1.0) at 998 exams. Emulating PI-RADS ≥ 4 decisions, at 998 exams, SLA specificity of 0.51 [221/433] remained higher than PLA specificity at 0.39 [170/433]. However, PLA specificity at 998 exams became comparable to SLA specificity of 0.37 [159/433] at 200 exams (P = 0.70). DATA CONCLUSION: Weakly supervised training of a classification CNN using patient-level-only annotation had lower performance compared to training with slice-wise annotations, but improved significantly faster with additional training data. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Poliésteres
2.
Sci Rep ; 13(1): 19805, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957250

RESUMEN

Prostate cancer (PCa) diagnosis on multi-parametric magnetic resonance images (MRI) requires radiologists with a high level of expertise. Misalignments between the MRI sequences can be caused by patient movement, elastic soft-tissue deformations, and imaging artifacts. They further increase the complexity of the task prompting radiologists to interpret the images. Recently, computer-aided diagnosis (CAD) tools have demonstrated potential for PCa diagnosis typically relying on complex co-registration of the input modalities. However, there is no consensus among research groups on whether CAD systems profit from using registration. Furthermore, alternative strategies to handle multi-modal misalignments have not been explored so far. Our study introduces and compares different strategies to cope with image misalignments and evaluates them regarding to their direct effect on diagnostic accuracy of PCa. In addition to established registration algorithms, we propose 'misalignment augmentation' as a concept to increase CAD robustness. As the results demonstrate, misalignment augmentations can not only compensate for a complete lack of registration, but if used in conjunction with registration, also improve the overall performance on an independent test set.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Imagen por Resonancia Magnética/métodos , Diagnóstico por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Computadores
3.
Invest Radiol ; 56(12): 799-808, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049336

RESUMEN

BACKGROUND: The potential of deep learning to support radiologist prostate magnetic resonance imaging (MRI) interpretation has been demonstrated. PURPOSE: The aim of this study was to evaluate the effects of increased and diversified training data (TD) on deep learning performance for detection and segmentation of clinically significant prostate cancer-suspicious lesions. MATERIALS AND METHODS: In this retrospective study, biparametric (T2-weighted and diffusion-weighted) prostate MRI acquired with multiple 1.5-T and 3.0-T MRI scanners in consecutive men was used for training and testing of prostate segmentation and lesion detection networks. Ground truth was the combination of targeted and extended systematic MRI-transrectal ultrasound fusion biopsies, with significant prostate cancer defined as International Society of Urological Pathology grade group greater than or equal to 2. U-Nets were internally validated on full, reduced, and PROSTATEx-enhanced training sets and subsequently externally validated on the institutional test set and the PROSTATEx test set. U-Net segmentation was calibrated to clinically desired levels in cross-validation, and test performance was subsequently compared using sensitivities, specificities, predictive values, and Dice coefficient. RESULTS: One thousand four hundred eighty-eight institutional examinations (median age, 64 years; interquartile range, 58-70 years) were temporally split into training (2014-2017, 806 examinations, supplemented by 204 PROSTATEx examinations) and test (2018-2020, 682 examinations) sets. In the test set, Prostate Imaging-Reporting and Data System (PI-RADS) cutoffs greater than or equal to 3 and greater than or equal to 4 on a per-patient basis had sensitivity of 97% (241/249) and 90% (223/249) at specificity of 19% (82/433) and 56% (242/433), respectively. The full U-Net had corresponding sensitivity of 97% (241/249) and 88% (219/249) with specificity of 20% (86/433) and 59% (254/433), not statistically different from PI-RADS (P > 0.3 for all comparisons). U-Net trained using a reduced set of 171 consecutive examinations achieved inferior performance (P < 0.001). PROSTATEx training enhancement did not improve performance. Dice coefficients were 0.90 for prostate and 0.42/0.53 for MRI lesion segmentation at PI-RADS category 3/4 equivalents. CONCLUSIONS: In a large institutional test set, U-Net confirms similar performance to clinical PI-RADS assessment and benefits from more TD, with neither institutional nor PROSTATEx performance improved by adding multiscanner or bi-institutional TD.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA