Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Sport Nutr Exerc Metab ; 34(1): 38-47, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37883634

RESUMEN

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.


Asunto(s)
Densidad Ósea , Colágeno Tipo I , Humanos , Masculino , Femenino , Colágeno Tipo I/farmacología , Colágeno , Absorciometría de Fotón , Suplementos Dietéticos , Biomarcadores
2.
J Acad Nutr Diet ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763462

RESUMEN

BACKGROUND: Although resting metabolic rate (RMR) is crucial for understanding athletes' energy requirements, limited information is available on the RMR of Paralympic athletes. OBJECTIVE: The aim of this study was to determine RMR and its predictors in a diverse cohort of Paralympic athletes and evaluate the agreement between measured and predicted RMR from both newly developed and pre-existing equations. DESIGN: This cross-sectional study, conducted between September 2020 and September 2022 in the Netherlands and Norway, assessed RMR in Paralympic athletes by means of ventilated hood indirect calorimetry and body composition by means of dual-energy x-ray absorptiometry. PARTICIPANTS: Sixty-seven Paralympic athletes (male: n = 37; female: n = 30) competing in various sports, with a spinal cord disorder (n = 22), neurologic condition (n = 8), limb deficiency (n = 18), visual or hearing impairment (n = 7), or other disability (n = 12) participated. MAIN OUTCOME MEASURES: RMR, fat-free mass (FFM), body mass, and triiodothyronine (T3) concentrations were assessed. STATISTICAL ANALYSES: Multiple regression analyses were conducted with height, FFM, body mass, sex, T3 concentration, and disabilities as potential predictors of RMR. Differences between measured and predicted RMRs were analyzed for individual accuracy, root mean square error, and intraclass correlation. RESULTS: Mean ± SD RMR was 1386 ± 258 kcal/d for females and 1686 ± 302 kcal/d for males. Regression analysis identified FFM, T3 concentrations, and the presence of a spinal cord disorder, as the main predictors of RMR (adjusted R2 = 0.71; F = 50.3; P < .001). The novel prediction equations based on these data, as well as pre-existing equations of Chun and colleagues and Nightingale and Gorgey performed well on accuracy (>60% of participants within 10% of measured RMR), had good reliability (intraclass correlation >0.78), and low root mean square error (≤141 kcal). CONCLUSIONS: FFM, total T3 concentrations, and presence of spinal cord disorder are the main predictors of RMR in Paralympic athletes. Both the current study's prediction equations and those from Chun and colleagues and Nightingale and Gorgey align well with measured RMR, offering accurate prediction equations for the RMR of Paralympic athletes.

3.
Bone Rep ; 21: 101767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694186

RESUMEN

Background: Bone health may be a concern in Paralympic athletes, given the presence of multiple risk factors predisposing these athletes to low bone mineral density (BMD). Objective: We aimed to assess the prevalence of low BMD among Paralympic athletes participating in various sport disciplines, and to identify potential risk factors for low BMD. Methods: Seventy Paralympic athletes, of whom 51 % were wheelchair-dependent, were included in this cross-sectional study. BMD of the whole-body, lumbar spine, total hip, and femoral neck were assessed by dual-energy x-ray absorptiometry. Comparisons between groups were conducted by one-way ANOVA, and regression analyses were conducted to identify potential risk factors for low BMD. Results: The prevalence of low BMD (Z-score < -1.0) was highest at femoral neck (34 %), followed by total hip (31 %), whole-body (21 %), and lumbar spine (18 %). Wheelchair-dependent athletes had significantly lower BMD Z-scores compared to the non-wheelchair-dependent athletes at whole-body level (-0.5 ± 1.4 vs 0.2 ± 1.3; P = 0.04), total hip (-1.1 ± 1.2 vs 0.0 ± 1.1; P < 0.01), and femoral neck (-1.0 ± 1.3 vs -0.1 ± 1.2; P < 0.01). At the lumbar spine, low BMD was completely absent in wheelchair basketball and tennis players. Regression analyses identified body mass, wheelchair dependence, and type of sport, as the main risk factors for low BMD. Conclusions: In this cohort of Paralympic athletes, low BMD is mainly present at the hip, and to a lesser extent at the whole-body and lumbar spine. The most prominent risk factors for low BMD in Paralympic athletes are related to mechanical loading patterns, including wheelchair use, the type of sport, and body mass.

4.
Med Sci Sports Exerc ; 56(5): 963-971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194704

RESUMEN

PURPOSE: Advanced insight in energy requirements of Paralympic athletes is imperative for optimizing their nutritional counseling. Given the lack of accurate data on total daily energy expenditure (TDEE) of Paralympic athletes, this study aimed to assess energy expenditure and nutritional intake of a large cohort of Paralympic athletes, across different sports and disabilities. METHODS: In this cross-sectional study, 48 Dutch and Norwegian Paralympic athletes (19 male/29 female) with various disabilities, competing in Para cycling, wheelchair tennis, wheelchair basketball, Para Nordic skiing, and alpine skiing participated. TDEE was assessed by the gold standard doubly labeled water method over a 14-d period, resting metabolic rate by ventilated hood indirect calorimetry, energy intake by three unannounced 24-h dietary recalls, body composition by dual-energy x-ray absorptiometry, and exercise training duration by a training log. RESULTS: Mean TDEE was 2908 ± 797 kcal·d -1 , ranging from 2322 ± 340 kcal·d -1 for wheelchair basketball players to 3607 ± 1001 kcal·d -1 for Para cyclists. Regression analysis identified fat-free mass, exercise duration, and the presence of a spinal cord disorder as the primary predictors of TDEE, explaining up to 73% of the variance in TDEE. Athletes' energy intake (2363 ± 905 kcal·d -1 ) was below their TDEE, whereas their body mass remained constant, indicating underreporting. Carbohydrate intake (4.1 ± 1.9 g·kg -1 body mass) was low, even when considering underreporting, whereas protein intake (1.8 ± 0.6 g·kg -1 body mass) was relatively high. CONCLUSIONS: Paralympic athletes display moderate- to high-energy expenditure, varying across sports and individuals. Much of the variation in TDEE can be attributed to individual differences in fat-free mass and exercise duration. This study establishes the benchmarks for energy requirements of Paralympic athletes, serving as the foundation for future dietary guidelines within this population.


Asunto(s)
Baloncesto , Paratletas , Humanos , Masculino , Femenino , Agua , Estudios Transversales , Metabolismo Energético , Ingestión de Energía , Atletas , Composición Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA