Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EMBO J ; 31(19): 3871-84, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22903062

RESUMEN

The E2F family of transcription factors plays an important role in controlling cell-cycle progression. While this is their best-known function, we report here novel functions for the newest members of the E2F family, E2F7 and E2F8 (E2F7/8). We show that simultaneous deletion of E2F7/8 in zebrafish and mice leads to severe vascular defects during embryonic development. Using a panel of transgenic zebrafish with fluorescent-labelled blood vessels, we demonstrate that E2F7/8 are essential for proper formation of blood vessels. Despite their classification as transcriptional repressors, we provide evidence for a molecular mechanism through which E2F7/8 activate the transcription of the vascular endothelial growth factor A (VEGFA), a key factor in guiding angiogenesis. We show that E2F7/8 directly bind and stimulate the VEGFA promoter independent of canonical E2F binding elements. Instead, E2F7/8 form a transcriptional complex with the hypoxia inducible factor 1 (HIF1) to stimulate VEGFA promoter activity. These results uncover an unexpected link between E2F7/8 and the HIF1-VEGFA pathway providing a molecular mechanism by which E2F7/8 control angiogenesis.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Fisiológica/genética , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Factores de Transcripción E2F/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Eliminación de Gen , Humanos , Ratones , Regiones Promotoras Genéticas , Pez Cebra
2.
Transcription ; 4(2): 62-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23412359

RESUMEN

Recently, we showed that E2F7 and E2F8 (E2F7/8) are critical regulators of angiogenesis through transcriptional control of VEGFA in cooperation with HIF. (1) Here we investigate the existence of other novel putative angiogenic E2F7/8-HIF targets, and discuss the role of the RB-E2F pathway in regulating angiogenesis during embryonic and tumor development.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Factores de Transcripción E2F/deficiencia , Factores de Transcripción E2F/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
PLoS One ; 8(9): e73693, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069224

RESUMEN

Lymphatic vessels are derived from venous endothelial cells and their formation is governed by the Vascular endothelial growth factor C (VegfC)/Vegf receptor 3 (Vegfr3; Flt4) signaling pathway. Recent studies show that Collagen and Calcium Binding EGF domains 1 protein (Ccbe1) enhances VegfC-dependent lymphangiogenesis. Both Ccbe1 and Flt4 have been shown to be indispensable for lymphangiogenesis. However, how these essential players are transcriptionally regulated remains poorly understood. In the case of angiogenesis, atypical E2fs (E2f7 and E2f8) however have been recently shown to function as transcriptional activators for VegfA. Using a genome-wide approach we here identified both CCBE1 and FLT4 as direct targets of atypical E2Fs. E2F7/8 directly bind and stimulate the CCBE1 promoter, while recruitment of E2F7/8 inhibits the FLT4 promoter. Importantly, inactivation of e2f7/8 in zebrafish impaired venous sprouting and lymphangiogenesis with reduced ccbe1 expression and increased flt4 expression. Remarkably, over-expression of e2f7/8 rescued Ccbe1- and Flt4-dependent lymphangiogenesis phenotypes. Together these results identified E2f7/8 as novel in vivo transcriptional regulators of Ccbe1 and Flt4, both essential genes for venous sprouting and lymphangiogenesis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Linfangiogénesis/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Western Blotting , Proteínas de Unión al Calcio/genética , Inmunoprecipitación de Cromatina , Electroforesis en Gel de Poliacrilamida , Humanos , Linfangiogénesis/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Dev Cell ; 27(5): 574-85, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24290981

RESUMEN

Epithelial cell migration is crucial for the development and regeneration of epithelial tissues. Aberrant regulation of epithelial cell migration has a major role in pathological processes such as the development of cancer metastasis and tissue fibrosis. Here, we report that in response to factors that promote cell motility, the Rap guanine exchange factor RAPGEF2 is rapidly phosphorylated by I-kappa-B-kinase-ß and casein kinase-1α and consequently degraded by the proteasome via the SCF(ßTrCP) ubiquitin ligase. Failure to degrade RAPGEF2 in epithelial cells results in sustained activity of Rap1 and inhibition of cell migration induced by HGF, a potent metastatic factor. Furthermore, expression of a degradation-resistant RAPGEF2 mutant greatly suppresses dissemination and metastasis of human breast cancer cells. These findings reveal a molecular mechanism regulating migration and invasion of epithelial cells and establish a key direct link between IKKß and cell motility controlled by Rap-integrin signaling.


Asunto(s)
Caseína Quinasa Ialfa/metabolismo , Movimiento Celular/fisiología , Células Epiteliales/citología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasa I-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Neoplasias de la Mama , Línea Celular Tumoral , Femenino , Células HEK293 , Xenoinjertos , Humanos , Masculino , Fosforilación/fisiología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA