Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Biol ; 17(6): e3000298, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31216282

RESUMEN

Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and are therefore interesting candidates for further study. Moreover, using simulated communities, we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.


Asunto(s)
Microbiota , Animales , Humanos , Modelos Teóricos , Plantas , Simbiosis
2.
BMC Microbiol ; 16(1): 139, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400878

RESUMEN

BACKGROUND: Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria. METHODS: Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL). RESULTS: Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of the control antibiotic [Gentamycin sulfate, (IZ, 25-30 mm)]. The lowest MIC value (12.5 mg/mL) was recorded for oil from husk of A. corrorima against Pseudomonas aeruginosa. Of the total eighteen extracts evaluated, two of the extracts [Methanol extract of root of Albiza schimperiana (ASRM) and petroleum ether extract of seed of Justica schimperiana (JSSP)] interfered with cell-cell communication most likely by interacting with the signaling molecules. CONCLUSION: Traditional medicinal plants from Ethiopia are potential source of alternative medicine for the local community and scientific research in search for alternative drugs to halt challenges associated with the emerging antimicrobial resistance. Furthermore, the Quorum Quenching activities observed in two of the plant extracts calls for more comprehensive evaluation of medicinal plants for the control of many bacterial processes and phenotypic behaviors such as pathogenicity, swarming, and biofilm formation. Being the first assessment of its kind on the potential application of Ethiopian traditional medicinal plants for interference in microbial cell-cell communication (anti-Quorum Sensing activities), the detailed chemistry of the active compounds and possible mechanism(s) of actions of the bio-molecules responsible for the observed interference were not addressed in the current study. Thus, further evaluation for the nature of those active compounds (bio-molecules) and detailed mechanism(s) of their interaction with microbial processes are recommended.


Asunto(s)
Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Percepción de Quorum/efectos de los fármacos , Antiinfecciosos/aislamiento & purificación , Bacillus cereus/efectos de los fármacos , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Farmacorresistencia Microbiana , Escherichia coli/efectos de los fármacos , Etiopía , Frutas/química , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Semillas/química , Staphylococcus aureus/efectos de los fármacos , Tracheophyta/química
3.
Appl Environ Microbiol ; 81(4): 1477-89, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527543

RESUMEN

Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum- quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.


Asunto(s)
Bacterias/aislamiento & purificación , Escherichia coli/fisiología , Homoserina/análogos & derivados , Invertebrados/microbiología , Lactonas/metabolismo , Percepción de Quorum , Algas Marinas/microbiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Escherichia coli/genética , Genes Reporteros , Homoserina/metabolismo
4.
Appl Environ Microbiol ; 81(17): 6038-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116680

RESUMEN

The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle.


Asunto(s)
Bacterias/aislamiento & purificación , Escifozoos/crecimiento & desarrollo , Escifozoos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Hibridación Fluorescente in Situ , Microbiota , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética
5.
Front Microbiol ; 15: 1356337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533338

RESUMEN

The concept of the metaorganism describes a multicellular host and its diverse microbial community, which form one biological unit with a combined genetic repertoire that significantly influences health and survival of the host. The present study delved into the emerging field of bacteriophage research within metaorganisms, focusing on the moon jellyfish Aurelia aurita as a model organism. The previously isolated Pseudomonas phage BSwM KMM1 and Citrobacter phages BSwM KMM2 - KMM4 demonstrated potent infectivity on bacteria present in the A. aurita-associated microbiota. In a host-fitness experiment, Baltic Sea subpopulation polyps were exposed to individual phages and a phage cocktail, monitoring polyp survival and morphology, as well as microbiome changes. The following effects were obtained. First, phage exposure in general led to recoverable malformations in polyps without affecting their survival. Second, analyses of the community structure, using 16S rRNA amplicon sequencing, revealed alterations in the associated microbial community in response to phage exposure. Third, the native microbiota is dominated by an uncultured likely novel Mycoplasma species, potentially specific to A. aurita. Notably, this main colonizer showed resilience through the recovery after initial declines, which aligned with abundance changes in Bacteroidota and Proteobacteria, suggesting a dynamic and adaptable microbial community. Overall, this study demonstrates the resilience of the A. aurita metaorganism facing phage-induced perturbations, emphasizing the importance of understanding host-phage interactions in metaorganism biology. These findings have implications for ecological adaptation and conservation in the rapidly changing marine environment, particularly regarding the regulation of blooming species and the health of marine ecosystems during ongoing environmental changes.

6.
Methods Mol Biol ; 2555: 23-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36306077

RESUMEN

The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.


Asunto(s)
Ecosistema , Metagenómica , Metagenoma , Biotecnología , Biodiversidad
7.
Anim Microbiome ; 5(1): 45, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735458

RESUMEN

Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.

8.
Front Microbiol ; 14: 1183627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637120

RESUMEN

Introduction: The associated diverse microbiome contributes to the overall fitness of Aurelia aurita, particularly to asexual reproduction. However, how A. aurita maintains this specific microbiome or reacts to manipulations is unknown. Methods: In this report, the response of A. aurita to manipulations of its native microbiome was studied by a transcriptomics approach. Microbiome-manipulated polyps were generated by antibiotic treatment and challenging polyps with a non-native, native, and potentially pathogenic bacterium. Total RNA extraction followed by RNAseq resulted in over 155 million reads used for a de novo assembly. Results: The transcriptome analysis showed that the antibiotic-induced change and resulting reduction of the microbiome significantly affected the host transcriptome, e.g., genes involved in processes related to immune response and defense mechanisms were highly upregulated. Similarly, manipulating the microbiome by challenging the polyp with a high load of bacteria (2 × 107 cells/polyp) resulted in induced transcription of apoptosis-, defense-, and immune response genes. A second focus was on host-derived quorum sensing interference as a potential defense strategy. Quorum Quenching (QQ) activities and the respective encoding QQ-ORFs of A. aurita were identified by functional screening a cDNA-based expression library generated in Escherichia coli. Corresponding sequences were identified in the transcriptome assembly. Moreover, gene expression analysis revealed differential expression of QQ genes depending on the treatment, strongly suggesting QQ as an additional defense strategy. Discussion: Overall, this study allows first insights into A. aurita's response to manipulating its microbiome, thus paving the way for an in-depth analysis of the basal immune system and additional fundamental defense strategies.

9.
Microbiol Spectr ; 11(4): e0026223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37378516

RESUMEN

Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.


Asunto(s)
Microbiota , Escifozoos , Animales , Humanos , Escifozoos/genética , Estadios del Ciclo de Vida/fisiología , Reacción en Cadena de la Polimerasa , Reproducción Asexuada
10.
Microorganisms ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37764028

RESUMEN

The demand for novel antimicrobial compounds is rapidly growing due to the rising appearance of antibiotic resistance in bacteria; accordingly, alternative approaches are urgently needed. Antimicrobial peptides (AMPs) are promising, since they are a naturally occurring part of the innate immune system and display remarkable broad-spectrum activity and high selectivity against various microbes. Marine invertebrates are a primary resource of natural AMPs. Consequently, cDNA expression (EST) libraries from the Cnidarian moon jellyfish Aurelia aurita and the Ctenophore comb jelly Mnemiopsis leidyi were constructed in Escherichia coli. Cell-free size-fractionated cell extracts (<3 kDa) of the two libraries (each with 29,952 clones) were consecutively screened for peptides preventing the biofilm formation of opportunistic pathogens using the crystal violet assay. The 3 kDa fraction of ten individual clones demonstrated promising biofilm-preventing activities against Klebsiella oxytoca and Staphylococcus epidermidis. Sequencing the respective activity-conferring inserts allowed for the identification of small ORFs encoding peptides (10-22 aa), which were subsequently chemically synthesized to validate their inhibitory potential. Although the peptides are likely artificial products from a random translation of EST inserts, the biofilm-preventing effects against K. oxytoca, Pseudomonas aeruginosa, S. epidermidis, and S. aureus were verified for five synthetic peptides in a concentration-dependent manner, with peptide BiP_Aa_5 showing the strongest effects. The impact of BiP_Aa_2, BiP_Aa_5, and BiP_Aa_6 on the dynamic biofilm formation of K. oxytoca was further validated in microfluidic flow cells, demonstrating a significant reduction in biofilm thickness and volume by BiP_Aa_2 and BiP_Aa_5. Overall, the structural characteristics of the marine invertebrate-derived AMPs, their physicochemical properties, and their promising antibiofilm effects highlight them as attractive candidates for discovering new antimicrobials.

11.
Viruses ; 15(7)2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515211

RESUMEN

The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Pseudomonas phage BSwM KMM1, Citrobacter phages BSwM KMM2-BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 showed a remarkably broad host range, infecting Gram-negative Pseudomonas as well as Gram-positive Staphylococcus. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Enterobacteriaceae , Fagos Pseudomonas/genética , ADN , Bacterias/genética , Agua de Mar , Genoma Viral
12.
Biology (Basel) ; 10(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199553

RESUMEN

Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell-cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.

13.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203753

RESUMEN

All multicellular organisms are associated with microbial communities, ultimately forming a metaorganism. Several studies conducted on well-established model organisms point to immunological, metabolic, and behavioral benefits of the associated microbiota for the host. Consequently, a microbiome can influence the physiology of a host; moreover, microbial community shifts can affect host health and fitness. The present study aimed to evaluate the significance and functional role of the native microbiota for life cycle transitions and fitness of the cnidarian moon jellyfish Aurelia aurita A comprehensive host fitness experiment was conducted studying the polyp life stage and integrating 12 combinations of treatments with microbiota modification (sterile conditions, foreign food bacteria, and potential pathogens). Asexual reproduction, e.g., generation of daughter polyps, and the formation and release of ephyrae were highly affected in the absence of the native microbiota, ultimately resulting in a halt of strobilation and ephyra release. Assessment of further fitness traits showed that health, growth, and feeding rate were decreased in the absence and upon community changes of the native microbiota, e.g., when challenged with selected bacteria. Moreover, changes in microbial community patterns were detected by 16S rRNA amplicon sequencing during the course of the experiment. This demonstrated that six operational taxonomic units (OTUs) significantly correlated and explained up to 97% of fitness data variability, strongly supporting the association of impaired fitness with the absence/presence of specific bacteria. Conclusively, our study provides new insights into the importance and function of the microbiome for asexual reproduction, health, and fitness of the basal metazoan A. auritaIMPORTANCE All multicellular organisms are associated with a diverse and specific community of microorganisms; consequently, the microbiome is of fundamental importance for health and fitness of the multicellular host. However, studies on microbiome contribution to host fitness are in their infancy, in particular, for less well-established hosts such as the moon jellyfish Aurelia aurita Here, we studied the impact of the native microbiome on the asexual reproduction and on further fitness traits (health, growth, and feeding) of the basal metazoan due to induced changes in its microbiome. We observed significant impact on all fitness traits analyzed, in particular, in the absence of the protective microbial shield and when challenged with marine potentially pathogenic bacterial isolates. Notable is the identified crucial importance of the native microbiome for the generation of offspring, consequently affecting life cycle decisions. Thus, we conclude that the microbiome is essential for the maintenance of a healthy metaorganism.


Asunto(s)
Microbiota , Escifozoos/crecimiento & desarrollo , Escifozoos/microbiología , Animales , Estadios del Ciclo de Vida , ARN Ribosómico 16S/genética , Reproducción Asexuada , Escifozoos/genética , Escifozoos/fisiología
14.
Sci Total Environ ; 734: 139471, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32464382

RESUMEN

The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P < 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities.


Asunto(s)
Microbiota , Animales , ARN Ribosómico 16S , Escifozoos , Vibrio , Zooplancton
15.
Microbiologyopen ; 9(9): e1094, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652897

RESUMEN

The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host-specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS-interfering activities. They interfered with the acyl-homoserine lactone (AHL)-based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non-model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota.


Asunto(s)
Bacterias/aislamiento & purificación , Ctenóforos/microbiología , Microbiota/fisiología , Escifozoos/microbiología , Acil-Butirolactonas/metabolismo , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Genes de ARNr , Interacciones Microbianas , Filogenia , Percepción de Quorum , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
16.
PLoS One ; 14(1): e0211366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30689669

RESUMEN

Biofilm formation in the clinical environment is of increasing concern since a significant part of human infections is associated, and caused by biofilm establishment of (opportunistic) pathogens, for instance Candida albicans and Staphylococcus epidermidis. The rapidly increasing number of antibiotic-resistant biofilms urgently requires the development of novel and effective strategies to prevent biofilm formation ideally targeting a wide range of infectious microorganisms. Both, synthesis of extracellular polymeric substances and quorum sensing are crucial for biofilm formation, and thus potential attractive targets to combat undesirable biofilms.We evaluated the ability of numerous recently identified metagenome-derived bacterial quorum quenching (QQ) proteins to inhibit biofilm formation of C. albicans and S. epidermidis. Here, proteins QQ-5 and QQ-7 interfered with the morphogenesis of C. albicans by inhibiting the yeast-to-hyphae transition, ultimately leading to impaired biofilm formation. Moreover, QQ5 and QQ-7 inhibited biofilm formation of S. epidermidis; in case of QQ7 most likely due to induced expression of the icaR gene encoding the repressor for polysaccharide intercellular adhesin (PIA) synthesis, the main determinant for staphylococcal biofilm formation. Our results indicate that QQ-5 and QQ-7 are attractive potential anti-biofilm agents in the prevention and treatment of C. albicans and S. epidermidis mono-species biofilms, and potentially promising anti-biofilm drugs in also combating multi-species infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Metagenómica , Percepción de Quorum , Staphylococcus epidermidis/genética , Proteínas Bacterianas/genética , Candida albicans/aislamiento & purificación , Candidiasis/microbiología , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/aislamiento & purificación
17.
Sci Rep ; 9(1): 34, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631102

RESUMEN

Multicellular organisms can be regarded as metaorganisms, comprising of a macroscopic host interacting with associated microorganisms. Within this alliance, the host has to ensure attracting beneficial bacteria and defending against pathogens to establish and maintain a healthy homeostasis. Here, we obtained several lines of evidence arguing that Aurelia aurita uses interference with bacterial quorum sensing (QS) - quorum quenching (QQ) - as one host defense mechanism. Three A. aurita-derived proteins interfering with bacterial QS were identified by functionally screening a metagenomic library constructed from medusa-derived mucus. Native expression patterns of these host open reading frames (ORFs) differed in the diverse life stages (associated with different microbiota) pointing to a specific role in establishing the developmental stage-specific microbiota. Highly increased expression of all QQ-ORFs in germ-free animals further indicates their impact on the microbiota. Moreover, incubation of native animals with pathogenic bacteria induced expression of the identified QQ-ORFs arguing for a host defense strategy against confronting bacteria by interference with bacterial QS. In agreement, immobilized recombinant QQ proteins induced restructuring of polyp-associated microbiota through changing abundance and operational taxonomic unit composition. Thus, we hypothesize that additional to the immune system host-derived QQ-activities potentially control bacterial colonization.


Asunto(s)
Bacterias/crecimiento & desarrollo , Interacciones Microbiota-Huesped , Percepción de Quorum , Escifozoos/inmunología , Escifozoos/microbiología , Animales , Antiinfecciosos/metabolismo , Proteínas/genética , Proteínas/metabolismo
18.
Microbiome ; 7(1): 133, 2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31521200

RESUMEN

BACKGROUND: The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS: In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/fisiología , Microbiota/fisiología , ARN Ribosómico 16S/genética , Animales , Bacterias/clasificación , Bacterias/genética , Bases de Datos Genéticas , Humanos , Metagenoma/genética , Microbiota/genética , Filogenia
19.
Zoology (Jena) ; 127: 1-19, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29599012

RESUMEN

From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host-microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents.


Asunto(s)
Adaptación Fisiológica , Ambientes Extremos , Microbiota/fisiología , Adaptación Fisiológica/fisiología , Animales , Ecosistema , Microbiota/genética , Filogenia , Simbiosis/fisiología
20.
Methods Mol Biol ; 1539: 23-42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27900682

RESUMEN

The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.


Asunto(s)
Organismos Acuáticos/genética , Biblioteca de Genes , Metagenoma , Metagenómica , Mutagénesis Insercional , Organismos Acuáticos/clasificación , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA