Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974564

RESUMEN

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/fisiología , Evolución Biológica , Interacciones Huésped-Patógeno , Enfermedades de los Monos/virología , Animales , Interacciones Huésped-Patógeno/genética , Macaca fascicularis , Enfermedades de los Monos/genética , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , ARN Viral , Selección Genética , Internalización del Virus , Replicación Viral
2.
PLoS Pathog ; 12(12): e1006048, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27926931

RESUMEN

Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute "pre-peak" phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque 'elite controllers' with a short-course of dextran sulfate sodium (DSS)-stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host's capacity to contain infection.


Asunto(s)
ADN Viral/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Viremia/virología , Animales , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Inmunofenotipificación , Inflamación/inmunología , Inflamación/virología , Activación de Linfocitos/inmunología , Macaca fascicularis , Masculino , Reacción en Cadena de la Polimerasa , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Replicación Viral/inmunología
3.
J Virol ; 88(22): 13418-28, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25210172

RESUMEN

UNLABELLED: Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE: Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses. Therefore, we evaluated a vaccine strategy designed to induce both antibody and T cell responses, which may provide more broadly cross-protective immunity against influenza. Here, we show in a translational primate model that vaccination with a modified vaccinia virus Ankara encoding hemagglutinin from a heterosubtypic H5N1 virus was associated with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nucleoprotein, an internal viral protein, was not. Unexpectedly, this reduced shedding was associated with nonneutralizing antibodies that bound H1 hemagglutinin and activated natural killer cells. Therefore, antibody-dependent cellular cytotoxicity (ADCC) may play a role in cross-protective immunity to influenza virus. Vaccines that stimulate ADCC antibodies may enhance protection against pandemic influenza virus.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Reacciones Cruzadas , Portadores de Fármacos/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Macaca fascicularis , Masculino , Enfermedades de los Primates/prevención & control , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética
4.
J Virol ; 87(10): 5512-22, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468501

RESUMEN

Emerging influenza viruses pose a serious risk to global human health. Recent studies in ferrets, macaques, and humans suggest that seasonal H1N1 (sH1N1) infection provides some cross-protection against 2009 pandemic influenza viruses (H1N1pdm), but the correlates of cross-protection are poorly understood. Here we show that seasonal infection of influenza-naïve Indian rhesus macaques (Macaca mulatta) with A/Kawasaki/173/2001 (sH1N1) virus induces antibodies capable of binding the hemagglutinin (HA) of both the homologous seasonal virus and the antigenically divergent A/California/04/2009 (H1N1pdm) strain in the absence of detectable H1N1pdm-specific neutralizing antibodies. These influenza virus-specific antibodies activated macaque NK cells to express both CD107a and gamma interferon (IFN-γ) in the presence of HA proteins from either sH1N1 or H1N1pdm viruses. Although influenza virus-specific antibody-dependent cellular cytotoxicity (ADCC)-mediated NK cell activation diminished in titer over time following sH1N1 infection, these cells expanded rapidly within 7 days following H1N1pdm exposure. Furthermore, we found that influenza virus-specific ADCC was present in bronchoalveolar lavage fluid and was able to activate lung NK cells. We concluded that infection with a seasonal influenza virus can induce antibodies that mediate ADCC capable of recognizing divergent influenza virus strains. Cross-reactive ADCC may provide a mechanism for reducing the severity of divergent influenza virus infections.


Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Enfermedades de los Primates/inmunología , Animales , Anticuerpos Antivirales/sangre , Líquido del Lavado Bronquioalveolar/inmunología , Reacciones Cruzadas , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interferón gamma/biosíntesis , Células Asesinas Naturales/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/biosíntesis , Macaca mulatta
5.
J Immunol Methods ; 525: 113602, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103783

RESUMEN

Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells to capture Ig heavy and light chain pairs. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, the nested PCR primer mixes are simplified by employing universal 5' primers, eliminating the need for complex 5' MTPX primer sets. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Anticuerpos Monoclonales/genética , Células B de Memoria , ADN Complementario
6.
Retrovirology ; 10: 116, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24156675

RESUMEN

BACKGROUND: CD8+ T cell responses, restricted by major histocompatibility complex (MHC) class I molecules, are critical to controlling human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) replication. Previous studies have used MHC-matched siblings and monozygotic twins to evaluate genetic and stochastic influences on HIV-specific T cell responses and viral evolution. Here we used a genetically restricted population of Mauritian cynomolgus macaques (MCM) to characterize T cell responses within nine pairs of MHC-matched animals. FINDINGS: In MHC-matched animals, there was considerable heterogeneity in the specificity and magnitude of T cell responses detected via individual peptide gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays. These findings were further supported by full proteome pooled peptide matrix ELISPOT data collected from this cohort at 52 weeks post-infection. Interestingly, peptide regions that elicited dominant T cell responses were more commonly shared between MHC-matched MCM than peptide regions that elicited non-dominant T cell responses. CONCLUSIONS: Our findings suggest that, while some T cell responses mounted during chronic infection by MHC-matched MCM are similar, the majority of responses are highly variable. Shared responses detected in this study between MHC-matched MCM were directed against epitopes that had previously elicited relatively dominant responses in MCM with the same MHC class I haplotype, suggesting that the factors that influence dominance may influence the reproducibility of responses as well. This may be an important consideration for future T cell-based vaccines aiming to consistently and reproducibly elicit protective T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Interferón gamma/metabolismo , Macaca
7.
J Virol ; 86(1): 605-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013056

RESUMEN

CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386₋394GW9, Nef103₋111RM9, and Rev59₋68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59₋68SP10 was associated with delayed accumulation of variants in Gag386₋394GW9 but had no effect on variation within Nef103₋111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/virología , Células Cultivadas , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/inmunología , VIH-1/fisiología , Humanos , Macaca mulatta , Datos de Secuencia Molecular , Alineación de Secuencia , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
J Virol ; 86(14): 7596-604, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22573864

RESUMEN

Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8(+) T cells, but it is not clear whether particular CD8(+) T cell responses or a broad repertoire of epitope-specific CD8(+) T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Animales , Ensayo de Immunospot Ligado a Enzimas , Genes MHC Clase I , Variación Genética , Heterocigoto , Interferón gamma/inmunología , Macaca fascicularis/genética , Macaca fascicularis/virología , Mauricio , Análisis de Secuencia de ARN , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral , Proteínas Reguladoras y Accesorias Virales/inmunología
9.
J Virol ; 86(17): 9361-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718834

RESUMEN

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Secuencia de Aminoácidos , Animales , Línea Celular , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Macaca , Datos de Secuencia Molecular , Noruega/epidemiología , Pandemias , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
10.
PLoS Pathog ; 7(11): e1002381, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102819

RESUMEN

In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To "prime" cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 "primed" animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5-7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7-10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in "primed" animals, and reached peak frequencies in blood and lung 4-7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in "primed" animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, "primed" animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología , ADP-Ribosil Ciclasa 1/sangre , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Citocinas/biosíntesis , Inmunización/métodos , Vacunas contra la Influenza/inmunología , Interferón gamma/biosíntesis , Antígeno Ki-67/sangre , Pulmón/inmunología , Macaca mulatta
11.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333083

RESUMEN

Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates the use of large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells, providing unbiased capture of Ig heavy and light chain pairs for cloning antibodies. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for PCR cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, universal 5' primers are employed to amplify the IgV genes from cDNA, simplifying the primer mixes in the nested PCR reactions and improving the recovery of matched heavy and light chain pairs. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.

12.
J Virol ; 85(1): 530-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20962091

RESUMEN

Human immunodeficiency virus (HIV)-positive individuals can be superinfected with different virus strains. Individuals who control an initial HIV infection are therefore still at risk for subsequent infection with divergent viruses, but the barriers to such superinfection remain unclear. Here we tested long-term nonprogressors' (LTNPs') susceptibility to superinfection using Indian rhesus macaques that express the major histocompatibility complex class I (MHC-I) allele Mamu-B 17, which is associated with control of the pathogenic AIDS virus SIVmac239. The Mamu-B 17-restricted CD8(+) T cell repertoire is focused almost entirely on 5 epitopes. We engineered a series of SIVmac239 variants bearing mutations in 3, 4, or all 5 of these epitopes and used them to serially challenge 2 Mamu-B 17-positive LTNPs. None of the escape variants caused breakthrough replication in LTNPs, although they readily infected Mamu-B 17-negative naive macaques. In vitro competing coculture assays and examination of viral evolution in hosts lacking Mamu-B 17 suggested that the mutant viruses had negligible defects in replicative fitness. Both LTNPs maintained robust immune responses, including simian immunodeficiency virus (SIV)-specific CD8(+) and CD4(+) T cells and neutralizing antibodies. Our results suggest that escape mutations in epitopes bound by "protective" MHC-I molecules may not be sufficient to establish superinfection in LTNPs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/genética , Sobrevivientes de VIH a Largo Plazo , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Sobreinfección/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/virología , Epítopos de Linfocito T/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Macaca mulatta/virología , Datos de Secuencia Molecular , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Sobreinfección/virología
13.
J Virol ; 85(24): 13195-203, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21937653

RESUMEN

The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. An Asp-to-Gly change at position 222 of the receptor-binding protein hemagglutinin (HA) correlates with more-severe infections in humans. The amino acid at position 222 of HA contributes to receptor-binding specificity with Asp (typically found in human influenza viruses) and Gly (typically found in avian and classic H1N1 swine influenza viruses), conferring binding to human- and avian-type receptors, respectively. Here, we asked whether binding to avian-type receptors enhances influenza virus pathogenicity. We tested two 2009 pandemic H1N1 viruses possessing HA-222G (isolated from severe cases) and two viruses that possessed HA-222D. In glycan arrays, viruses possessing HA-222D preferentially bound to human-type receptors, while those encoding HA-222G bound to both avian- and human-type receptors. This difference in receptor binding correlated with efficient infection of viruses possessing HA-222G, compared to those possessing HA-222D, in human lung tissue, including alveolar type II pneumocytes, which express avian-type receptors. In a nonhuman primate model, infection with one of the viruses possessing HA-222G caused lung damage more severe than did infection with a virus encoding HA-222D, although these pathological differences were not observed for the other virus pair with either HA-222G or HA-222D. These data demonstrate that the acquisition of avian-type receptor-binding specificity may result in more-efficient infection of human alveolar type II pneumocytes and thus more-severe lung damage. Collectively, these findings suggest a new mechanism by which influenza viruses may become more pathogenic in mammals, including humans.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Receptores Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Pulmón/patología , Pulmón/virología , Macaca , Receptores Virales/genética
14.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404997

RESUMEN

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Animales , Antígenos CD34 , Interferón gamma , Isoanticuerpos , Macaca fascicularis , Complejo Mayor de Histocompatibilidad
15.
Sci Rep ; 12(1): 12345, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853970

RESUMEN

Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the mechanism(s) responsible for these post-transplant viral reservoir declines are not fully understood. Therefore, we modeled allo-HSCT in ART-suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. Thus, we infected four MCMs with CCR5-tropic SHIV162P3 and started them on ART 6-16 weeks post-infection (p.i.), maintaining continuous ART during myeloablative conditioning. To prevent graft-versus-host disease (GvHD), we transplanted allogeneic MHC-matched α/ß T cell-depleted bone marrow cells and prophylactically treated the MCMs with cyclophosphamide and tacrolimus. The transplants produced ~ 85% whole blood donor chimerism without causing high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their blood post-transplant. However, SHIV-harboring cells persisted in various tissues, with detectable viral DNA in lymph nodes and tissues between 38 and 62 days post-transplant. Further, removing one MCM from ART at 63 days post-transplant resulted in SHIV rapidly rebounding within 7 days of treatment withdrawal. In conclusion, transplanting SHIV-infected MCMs with allogeneic MHC-matched α/ß T cell-depleted bone marrow cells prevented high-grade GvHD and decreased SHIV-harboring cells in the blood post-transplant but did not eliminate viral reservoirs in tissues.


Asunto(s)
Enfermedad Injerto contra Huésped , Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Trasplante de Médula Ósea/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , VIH , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Macaca fascicularis , Receptores de Antígenos de Linfocitos T , Virus de la Inmunodeficiencia de los Simios/genética
16.
J Virol ; 83(22): 11514-27, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19726517

RESUMEN

An understanding of the mechanism(s) by which some individuals spontaneously control human immunodeficiency virus (HIV)/simian immunodeficiency virus replication may aid vaccine design. Approximately 50% of Indian rhesus macaques that express the major histocompatibility complex (MHC) class I allele Mamu-B*08 become elite controllers after infection with simian immunodeficiency virus SIVmac239. Mamu-B*08 has a binding motif that is very similar to that of HLA-B27, a human MHC class I allele associated with the elite control of HIV, suggesting that SIVmac239-infected Mamu-B*08-positive (Mamu-B*08+) animals may be a good model for the elite control of HIV. The association with MHC class I alleles implicates CD8+ T cells and/or natural killer cells in the control of viral replication. We therefore introduced point mutations into eight Mamu-B*08-restricted CD8+ T-cell epitopes to investigate the contribution of epitope-specific CD8+ T-cell responses to the development of the control of viral replication. Ten Mamu-B*08+ macaques were infected with this mutant virus, 8X-SIVmac239. We compared immune responses and viral loads of these animals to those of wild-type SIVmac239-infected Mamu-B*08+ macaques. The five most immunodominant Mamu-B*08-restricted CD8+ T-cell responses were barely detectable in 8X-SIVmac239-infected animals. By 48 weeks postinfection, 2 of 10 8X-SIVmac239-infected Mamu-B*08+ animals controlled viral replication to <20,000 viral RNA (vRNA) copy equivalents (eq)/ml plasma, while 10 of 15 wild-type-infected Mamu-B*08+ animals had viral loads of <20,000 vRNA copy eq/ml (P = 0.04). Our results suggest that these epitope-specific CD8+ T-cell responses may play a role in establishing the control of viral replication in Mamu-B*08+ macaques.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Replicación Viral/genética , Animales , Línea Celular , Cartilla de ADN , Epítopos de Linfocito T/inmunología , Genes MHC Clase I/inmunología , Variación Genética/inmunología , Macaca mulatta/inmunología , Macaca mulatta/virología , Mutagénesis Sitio-Dirigida , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral
17.
Front Immunol ; 11: 586251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193411

RESUMEN

Allogeneic hematopoietic stem cell transplants can lead to dramatic reductions in human immunodeficiency virus (HIV) reservoirs. This effect is partially mediated by donor T cells recognizing lymphocyte-expressed minor histocompatibility antigens (mHAgs). The potential to mark malignant and latently infected cells for destruction makes mHAgs attractive targets for cellular immunotherapies. However, testing such HIV reservoir reduction strategies will likely require preclinical studies in non-human primates (NHPs). In this study, we used a combination of alloimmunization, whole exome sequencing, and bioinformatics to identify an mHAg in Mauritian cynomolgus macaques (MCMs). We mapped the minimal optimal epitope to a 10-mer peptide (SW10) in apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) and determined the major histocompatibility complex class I restriction element as Mafa-A1∗063, which is expressed in almost 90% of MCMs. APOBEC3C SW10-specific CD8+ T cells recognized immortalized B cells but not fibroblasts from an mHAg-positive MCM. These results provide a framework for identifying mHAgs in a non-transplant setting and suggest that APOBEC3C SW10 could be used as a model antigen to test mHAg-targeted therapies in NHPs.


Asunto(s)
Citidina Desaminasa/inmunología , Macaca fascicularis/inmunología , Antígenos de Histocompatibilidad Menor/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología
18.
PLoS One ; 12(7): e0179039, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719653

RESUMEN

Monoclonal antibodies that bind to human leukocyte antigen (HLA) are useful tools for HLA-typing, tracking donor-recipient chimerisms after bone marrow transplants, and characterizing specific major histocompatibility complexes (MHC) on cell surfaces. Unfortunately, equivalent reagents are not available for rhesus macaques, which are commonly used animal as models in organ transplant and infectious disease research. To address this deficiency, we isolated an antibody that recognizes the common Indian rhesus macaque MHC class I molecule, Mamu-A1*001. We induced Mamu-A1*001-binding antibodies by alloimmunizing a female Mamu-A1*001-negative rhesus macaque with peripheral blood mononuclear cells (PBMC) from a male Mamu-A1*001-positive donor. A Fab phage display library was constructed with PBMC from the alloimmunized macaque and panned to isolate an antibody that binds to Mamu-A1*001 but not to other common rhesus macaque MHC class I molecules. The isolated antibody distinguishes PBMC from Mamu-A1*001-positive and -negative macaques. Additionally, the Mamu-A1*001-specific antibody binds the cynomolgus macaque MHC class I ortholog Mafa-A1*001:01 but not variants Mafa-A1*001:02/03, indicating a high degree of binding specificity. The Mamu-A1*001-specific antibody will be useful for identifying Mamu-A1*001-positive rhesus macaques, for detecting Mamu-A1*001-positive cells in populations of Mamu-A1*001-negative cells, and for examining disease processes that alter expression of Mamu-A1*001 on cell surfaces. Moreover, the alloimmunization process we describe will be useful for isolating additional MHC allomorph-specific monoclonal antibodies or antibodies against other polymorphic host proteins which are difficult to isolate with traditional technologies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Antígenos de Histocompatibilidad Clase I/inmunología , Biblioteca de Péptidos , Animales , Femenino , Humanos , Inmunización , Macaca mulatta , Masculino
19.
mBio ; 7(1): e02009-15, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26908578

RESUMEN

UNLABELLED: Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. IMPORTANCE: Outbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the family Arteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/aislamiento & purificación , Arterivirus/patogenicidad , Colobus/virología , Fiebres Hemorrágicas Virales/veterinaria , Macaca fascicularis/virología , Enfermedades de los Monos/virología , Animales , Arterivirus/genética , Arterivirus/crecimiento & desarrollo , Infecciones por Arterivirus/inmunología , Infecciones por Arterivirus/fisiopatología , Infecciones por Arterivirus/virología , Línea Celular , Fiebres Hemorrágicas Virales/inmunología , Fiebres Hemorrágicas Virales/fisiopatología , Fiebres Hemorrágicas Virales/virología , Hígado/química , Hígado/enzimología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/fisiopatología , Uganda , Carga Viral
20.
Genome Biol ; 15(11): 478, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25418588

RESUMEN

BACKGROUND: A small percentage of human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected macaques control virus replication without antiretroviral treatment. The major determinant of this control is host expression of certain major histocompatibility complex alleles. However, this association is incompletely penetrant, suggesting that additional loci modify the major histocompatibility complex's protective effect. Here, to identify candidate control-modifying loci, we sequence the genomes of 12 SIV-infected Mauritian cynomolgus macaques that experienced divergent viral load set points despite sharing the protective M1 major histocompatibility complex haplotype. RESULTS: Our genome-wide analysis of haplotype-level variation identifies seven candidate control-modifying loci on chromosomes 2, 3, 7, 8, 9, 10, and 14. The highest variant density marks the candidate on chromosome 7, which is the only control-modifying locus to comprise genes with known immunological function. Upon closer inspection, we found an allele for one of these genes, granzyme B, to be enriched in M1(+) controllers. Given its established role as a cytotoxic effector molecule that participates in CD8-mediated killing of virus-infected cells, we test the role of variation within gzmb in modifying SIV control by prospectively challenging M1(+) granzyme B-defined macaques. CONCLUSIONS: Our study establishes a framework for using whole genome sequencing to identify haplotypes that may contribute to complex clinical phenotypes. Further investigation into the immunogenetics underlying spontaneous HIV control may contribute to the rational design of a vaccine that prevents acquired immune deficiency syndrome.


Asunto(s)
Genoma Viral , Macaca/virología , Virus de la Inmunodeficiencia de los Simios/genética , Replicación Viral/genética , Síndrome de Inmunodeficiencia Adquirida/genética , Síndrome de Inmunodeficiencia Adquirida/virología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macaca/genética , Macaca/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA