Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298462

RESUMEN

Kenya is the seventh most prominent producer of common beans globally and the second leading producer in East Africa. However, the annual national productivity is low due to insufficient quantities of vital nutrients and nitrogen in the soils. Rhizobia are symbiotic bacteria that fix nitrogen through their interaction with leguminous plants. Nevertheless, inoculating beans with commercial rhizobia inoculants results in sparse nodulation and low nitrogen supply to the host plants because these strains are poorly adapted to the local soils. Several studies describe native rhizobia with much better symbiotic capabilities than commercial strains, but only a few have conducted field studies. This study aimed to test the competence of new rhizobia strains that we isolated from Western Kenya soils and for which the symbiotic efficiency was successfully determined in greenhouse experiments. Furthermore, we present and analyze the whole-genome sequence for a promising candidate for agricultural application, which has high nitrogen fixation features and promotes common bean yields in field studies. Plants inoculated with the rhizobial isolate S3 or with a consortium of local isolates (COMB), including S3, produced a significantly higher number of seeds and seed dry weight when compared to uninoculated control plants at two study sites. The performance of plants inoculated with commercial isolate CIAT899 was not significantly different from uninoculated plants (p > 0.05), indicating tight competition from native rhizobia for nodule occupancy. Pangenome analysis and the overall genome-related indices showed that S3 is a member of R. phaseoli. However, synteny analysis revealed significant differences in the gene order, orientation, and copy numbers between S3 and the reference R. phaseoli. Isolate S3 is phylogenomically similar to R. phaseoli. However, it has undergone significant genome rearrangements (global mutagenesis) to adapt to harsh conditions in Kenyan soils. Its high nitrogen fixation ability shows optimal adaptation to Kenyan soils, and the strain can potentially replace nitrogenous fertilizer application. We recommend that extensive fieldwork in other parts of the country over a period of five years be performed on S3 to check on how the yield changes with varying whether conditions.


Asunto(s)
Phaseolus , Rhizobium , Rhizobium/genética , Kenia , Phaseolus/microbiología , Suelo , Simbiosis/genética , Nitrógeno
2.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743041

RESUMEN

Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/microbiología , Fijación del Nitrógeno , Suelo , Simbiosis
3.
Adv Virol ; 2024: 2197725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139708

RESUMEN

Potato virus Y (PVY) is a highly diverse and genetically variable virus with various strains. Differential evolutionary routes have been reported in the genus Potyvirus, caused by natural selection pressure, mutation, and recombination, with their virulence being dependent on different environmental conditions. Despite its significance and economic impact on Solanaceous species, the understanding of PVY's phylogeography in Kenya remains limited and inadequately documented. The study centers on the molecular characterization of a Kenyan PVY isolate, GenBank accession number PP069009. In-depth phylogenetic analysis unveiled a strong evolutionary association between the Kenyan isolate and isolate [JQ924287] from the United States of America, supported by a robust 92% probability. Recombinant analyses exposed a mosaic-like genetic architecture within the Kenyan isolate, indicating multiple gene recombination events. Selection pressure scrutiny identified specific sites under selective pressure, with evidence of positive/diversifying and negative/purifying selection. Population genetics analysis revealed a calculated nucleotide diversity (π) of 0.00354881, while analysis of molecular variance (AMOVA) unveiled a structured genetic landscape with an øST value of 0.45224. The extensive haplotype network depicted the possibility of diverse PVY strains occurring across continents. This analysis provides valuable insights into the genetic diversity and distribution of PVY globally, highlighting the importance of understanding evolutionary dynamics for effective management and control strategies of PVY on a global scale.

4.
Int J Microbiol ; 2023: 6668097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908981

RESUMEN

Phosphorus solubilizing bacteria (PSB) are a category of microbes that transform insoluble phosphates in soil into soluble forms that crops can utilize. Phosphorus in natural soils is abundant but poorly soluble. Hence, introducing PSB is a safer way of improving its solubility. The aim of this study was to genetically characterize and determine the mineralization capability of selected PSB colonizing rhizospheres of common beans in Western Kenya. Seven potential phosphorus solubilizing bacteria (PSB) were isolated from various subregions of Western Kenya. 16S ribosomal RNA gene sequencing and National Center for Biotechnology Information (NCBI), Basic Local Alignment Search Tool (BLAST) identified the isolates. The phosphate solubilization potential of the isolates was evaluated under agar and broth medium of National Botanical Research Institute's phosphate (NBRIP) supplemented with tricalcium calcium phosphate (TCP). Identified isolates were as follows: KK3 as Enterobacter mori, B5 (KB5) as Pseudomonas kribbensis, KV1 as Enterobacter asburiae, KB3 as Enterobacter mori, KK1 as Enterobacter cloacae, KBU as Enterobacter tabaci, and KB2 as Enterobacter bugandensis. The strains B5 and KV1 were the most effective phosphorus solubilizers with 4.16 and 3.64 indices, respectively. The microbes converted total soluble phosphate concentration in broth medium which was 1395 and 1471 P µg/mL, respectively. The least performing isolate was KBU with a 2.34 solubility index. Significant (p ≤ 0.05) differences in plant biomass for Rose coco and Mwitemania bean varieties were observed under inoculation with isolates B5 and KV1. PSB isolates found in common bean rhizospheres exhibited molecular variations and isolates B5 and KV1 are the potential in solving the insufficiency of phosphorus for sustainable crop production.

5.
Genes (Basel) ; 14(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37107553

RESUMEN

Chronic stress is a serious threat to aquaculture as it lowers fish growth performance and compromises fish welfare. The exact mechanism by which growth is retarded is, however, not clearly understood. This study sought to elucidate the gene expression profiles associated with chronic stress in cultured Nile tilapia (Oreochromis niloticus) reared for 70 days at different ammonia concentrations and stocking densities. Fish in the treatment groups showed negative growth, while the controls showed positive allometric growth. The specific condition factor (Kn) ranged from 1.17 for the controls to 0.93 for the ammonia and 0.91 for the stocking density treatments. RNA was extracted from muscle tissue using TRIzol followed by library construction and Illumina sequencing. Comparative transcriptome analysis revealed 209 differentially expressed genes (DEGs) (156 up- and 53 down-regulated) in the ammonia and 252 DEGs (175 up- and 77 down-regulated) in the stocking density treatment. In both treatments, 24 and 17 common DEGs were up- and down-regulated, respectively. DEGs were significantly enriched in six pathways associated with muscle activity, energy mobilization and immunity. The heightened muscular activity consumes energy which would otherwise have been utilized for growth. These results bring to fore the molecular mechanisms underlying chronic stress' suppression of growth in cultured Nile tilapia.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Amoníaco , Perfilación de la Expresión Génica , Transcriptoma/genética , Transducción de Señal/genética
6.
J Egypt Natl Canc Inst ; 35(1): 14, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184779

RESUMEN

BACKGROUND: Breast cancer is the most common female cancer worldwide. Its diagnosis and prognosis remain scanty, imprecise, and poorly documented. Previous studies have indicated that some genetic mutational signatures are suspected to lead to progression of various breast cancer scenarios. There is paucity of data on the role of AI tools in delineating breast cancer mutational signatures. This study sought to investigate the relationship between breast cancer genetic mutational profiles using artificial intelligence models with a view to developing an accurate prognostic prediction based on breast cancer genetic signatures. Prior research on breast cancer has been based on symptoms, origin, and tumor size. It has not been investigated whether diagnosis of breast cancer can be made utilizing AI platforms like Cytoscape, Phenolyzer, and Geneshot with potential for better prognostic power. This is the first ever attempt for a combinatorial approach to breast cancer diagnosis using different AI platforms. METHOD: Artificial intelligence (AI) are mathematical algorithms that simulate human cognitive abilities and solve difficult healthcare issues such as complicated biological abnormalities like those experienced in breast cancer scenarios. The current models aimed to predict outcomes and prognosis by correlating imaging phenotypes with genetic mutations, tumor profiles, and hormone receptor status and development of imaging biomarkers that combine tumor and patient-specific features. Geneshotsav 2021, Cytoscape 3.9.1, and Phenolyzer Nature Methods, 12:841-843 (2015) tools, were used to mine breast cancer-associated mutational signatures and provided useful alternative computational tools for discerning pathways and enriched networks of genes of similarity with the overall goal of providing a systematic view of the variety of mutational processes that lead to breast cancer development. The development of novel-tailored pharmaceuticals, as well as the distribution of prospective treatment alternatives, would be aided by the collection of massive datasets and the use of such tools as diagnostic markers. RESULTS: Specific DNA-maintenance defects, endogenous or environmental exposures, and cancer genomic signatures are connected. The PubMed database (Geneshot) search for the keywords yielded a total of 21,921 genes associated with breast cancer. Then, based on their propensity to result in gene mutations, the genes were screened using the Phenolyzer software. These platforms lend credence to the fact that breast cancer diagnosis using Cytoscape 3.9.1, Phenolyzer, and Geneshot 2021 reveals high profile of the following mutational signatures: BRCA1, BRCA2, TP53, CHEK2, PTEN, CDH1, BRIP1, RAD51C, CASP3, CREBBP, and SMAD3.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inteligencia Artificial , Predisposición Genética a la Enfermedad , Mutación , Genes BRCA2
7.
Biomed Res Int ; 2023: 3724531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521121

RESUMEN

Lake Victoria, the second-largest freshwater lake in the world, provides an important source of food and income, particularly fish for both domestic consumption and for export market. In recent years, Lake Victoria has suffered massive pollution from both industrial and wastewater discharge. Microplastic biomes, pharmaceutical residues, drugs of abuse, heavy metals, agrochemicals, and personal care products are ubiquitous in the aquatic ecosystem of Winam Gulf. These pollutants are known to alter microbial assemblages in aquatic ecosystems with far-reaching ramification including a calamitous consequence to human health. Indeed, some of these pollutants have been associated with human cancers and antimicrobial resistance. There is a paucity of data on the microbial profiles of this important but heavily polluted aquatic ecosystem. The current study sought to investigate the metagenomic profiles of microbial assemblages in the Winam Gulf ecosystem. Water and sediment samples were collected from several locations within the study sites. Total genomic DNA pooled from all sampling sites was extracted and analyzed by whole-genome shotgun sequencing. Analyses revealed three major kingdoms: bacteria, archaea and eukaryotes belonging to 3 phyla, 13 classes, 14 families, 9 orders, 14 genera, and 10 species. Proteobacteria, Betaproteobacteria, Comamonadaceae, Burkholdariales, and Arcobacter were the dominated phyla, class, family, order, genera, and species, respectively. The Kyoto Encyclopedia of Genes and Genomes indicated the highest number of genes involved in metabolism. The presence of carbohydrate metabolism genes and enzymes was used to infer organic pollutions from sewage and agricultural runoffs. Similarly, the presence of xylene and nutrotoluene degradation genes and enzyme was used to infer industrial pollution into the lake. Drug metabolism genes lend credence to the possibility of pharmaceutical pollutants in water. Taken together, there is a clear indication of massive pollution. In addition, carbohydrate-active enzymes were the most abundant and included genes in glycoside hydrolases. Shotgun metagenomic analyses conveyed an understanding of the microbial communities of the massively polluted aquatic ecosystem of Winam Gulf, Lake Vicoria, Kenya. The current study documents the presence of multiclass pollutants in Lake Victoria and reveals information that might be useful for a potential bioremediation strategy using the native microbial communities.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Animales , Humanos , Lagos , Ecosistema , Kenia , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Microbiota/genética , Agua , Preparaciones Farmacéuticas
8.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269493

RESUMEN

Soils with low pH and high aluminium (Al) contamination restrict common bean production, mainly due to adverse effects on rhizobia. We isolated a novel rhizobium strain, B3, from Kenyan soil which is more tolerant to Al stress than the widely used commercial strain CIAT899. B3 was resistant to 50 µM Al and recovered from 100 µM Al stress, while CIAT899 did not. Calcein labeling showed that less Al binds to the B3 membranes and less ATP and mScarlet-1 protein, a cytoplasmic marker, leaked out of B3 than CIAT899 cells in Al-containing media. Expression profiles showed that the primary targets of Al are genes involved in membrane biogenesis, metal ions binding and transport, carbohydrate, and amino acid metabolism and transport. The identified differentially expressed genes suggested that the intracellular γ-aminobutyric acid (GABA), glutathione (GSH), and amino acid levels, as well as the amount of the extracellular exopolysaccharide (EPS), might change during Al stress. Altered EPS levels could also influence biofilm formation. Therefore, these parameters were investigated in more detail. The GABA levels, extracellular EPS production, and biofilm formation increased, while GSH and amino acid level decreased. In conclusion, our comparative analysis identified genes that respond to Al stress in R. phaseoli. It appears that a large portion of the identified genes code for proteins stabilizing the plasma membrane. These genes might be helpful for future studies investigating the molecular basis of Al tolerance and the characterization of candidate rhizobial isolates that perform better in Al-contaminated soils than commercial strains.


Asunto(s)
Rhizobium phaseoli , Rhizobium , Aluminio/toxicidad , Aminoácidos , Membrana Celular , Kenia , Suelo , Ácido gamma-Aminobutírico
9.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429056

RESUMEN

Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.


Asunto(s)
Phaseolus , Rhizobium , Tolerancia a la Sal , Kenia , Suelo/química
10.
Front Microbiol ; 12: 697567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566909

RESUMEN

Common bean is one of the primary protein sources in third-world countries. They form nodules with nitrogen-fixing rhizobia, which have to be adapted to the local soils. Commercial rhizobial strains such as Rhizobium tropici CIAT899 are often used in agriculture. However, this strain failed to significantly increase the common bean yield in many places, including Kenya, due to the local soils' low pH. We isolated two indigenous rhizobial strains from the nodules of common bean from two fields in Western Kenya that have never been exposed to commercial inocula. We then determined their ability to fix nitrogen in common beans, solubilize phosphorus, and produce indole acetic acid. In greenhouse experiments, common bean plants inoculated with two isolates, B3 and S2 in sterile vermiculite, performed better than those inoculated with CIAT899 or plants grown with nitrogen fertilizer alone. In contrast to CIAT899, both isolates grew in the media with pH 4.8. Furthermore, isolate B3 had higher phosphate solubilization ability and produced more indole acetic acid than the other two rhizobia. Genome analyses revealed that B3 and S2 are different strains of Rhizobium phaseoli. We recommend fieldwork studies in Kenyan soils to test the efficacy of the two isolates in the natural environment in an effort to produce inoculants specific for these soils.

11.
Int J Genomics ; 2016: 8956412, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28003997

RESUMEN

Increased agricultural production is an urgent issue. Projected global population is 9 million people by mid of this century. Estimation projects death of 1 million people for lack of food quality (micronutrient deficit) and quantity (protein deficit). Majority of these people will be living in developing countries. Other global challenges include shrinking cultivable lands, salinity, and flooding due to climate changes, new emerging pathogens, and pests. These affect crop production. Furthermore, they are major threats to crop genetic resources and food security. Genetic diversity in cultivated crops indicates gene pool richness. It is the greatest resource for plant breeders to select lines that enhance food security. This study was conducted by Masinde Muliro University to evaluate genetic diversity in 19 cowpea accessions from Kenya national gene bank. Accessions clustered into two major groups. High divergence was observed between accessions from Ethiopia and Australia and those from Western Kenya. Upper Volta accessions were closely related to those from Western Kenya. Low variation was observed between accessions from Eastern and Rift Valley than those from Western and Coastal regions of Kenya. Diversity obtained in this study can further be exploited for the improvement of cowpea in Kenya as a measure of food security.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA