Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Brain Behav Immun ; 88: 781-790, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32439472

RESUMEN

There is ample evidence for the role of the immune system in developing chronic pain following peripheral nerve injury. Especially Toll-like receptors (TLRs) and their associated signaling components and pro-inflammatory cytokines such as IL-1ß, induced after injury, are involved in nociceptive processes and believed to contribute to the manifestation of chronic neuropathic pain states. Whereas the inhibition of the kinase function of IRAK-4, a central kinase downstream of TLRs and IL-1 receptors (IL-1Rs), seems efficacious in various chronic inflammatory and autoimmune models, it's role in regulating chronic neuropathic pain remained elusive to date. Here, we examined whether pharmacological inhibition of IRAK-4 kinase activity using PF-06650833 and BMS-986147, two clinical-stage kinase inhibitors, is effective for controlling persistent pain following nerve injury. Both inhibitors potently inhibited TLR-triggered cytokine release in human peripheral blood mononuclear cell (PBMC) as well as human and rat whole blood cultures. BMS-986147 showing favorable pharmacokinetic (PK) properties, significantly inhibited R848-triggered plasma TNF levels in a rat in vivo cytokine release model after single oral dosing. However, BMS-986147 dose dependently reversed cold allodynia in a rat chronic constriction injury (CCI) model following intrathecal administration only, supporting the notion that central neuro-immune modulation is beneficial for treating chronic neuropathic pain. Although both inhibitors were efficacious in inhibiting IL-1ß- or TLR-triggered cytokine release in rat dorsal root ganglion cultures, only partial efficacy was reached in IL-1ß-stimulated human glial cultures indicating that inhibiting IRAK-4́'s kinase function might be partially dispensable for human IL-1ß driven neuroinflammation. Overall, our data demonstrate that IRAK-4 inhibitors could provide therapeutic benefit in chronic pain following nerve injury, and the central driver for efficacy in the neuropathic pain model as well as potential side effects of centrally available IRAK-4 inhibitors warrant further investigation to develop effective analgesia for patients in high unmet medical need.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Neuralgia , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Quinasas Asociadas a Receptores de Interleucina-1 , Leucocitos Mononucleares , Neuralgia/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
2.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099189

RESUMEN

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Asunto(s)
Diaminas/farmacología , Lipidosis/inducido químicamente , Modelos Biológicos , Animales , Encéfalo/metabolismo , Química Farmacéutica , Líquido Extracelular/metabolismo , Femenino , Células Hep G2 , Humanos , Pulmón/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Modelos Animales , Modelos Químicos , Fosfolípidos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular
3.
Antimicrob Agents Chemother ; 58(7): 3843-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752278

RESUMEN

Herpes simplex virus (HSV) infections can cause considerable morbidity. Transmission of HSV-2 has become a major health concern, since it has been shown to promote transmission of other sexually transmitted diseases. Pritelivir (AIC316, BAY 57-1293) belongs to a new class of HSV antiviral compounds, the helicase-primase inhibitors, which have a mode of action that is distinct from that of antiviral nucleoside analogues currently in clinical use. Analysis of pharmacokinetic-pharmacodynamic parameters is a useful tool for the selection of appropriate doses in clinical trials, especially for compounds belonging to new classes for which no or only limited data on therapeutic profiles are available. For this purpose, the effective dose of pritelivir was determined in a comprehensive mouse model of HSV infection. Corresponding plasma concentrations were measured, and exposures were compared with efficacious concentrations derived from cell cultures. The administration of pritelivir at 10 mg/kg of body weight once daily for 4 days completely suppressed any signs of HSV infection in the animals. Associated plasma concentrations adjusted for protein binding stayed above the cell culture 90% effective concentration (EC90) for HSV-1 for almost the entire dosing interval. Interestingly, by increasing the dose 6-fold and prolonging the treatment duration to 8 days, it was possible to treat mice infected with an approximately 30-fold pritelivir-resistant but fully pathogenic HSV-1 virus. Corresponding plasma concentrations exceeded the EC90 of this mutant for <8 h, indicating that even suboptimal exposure to pritelivir is sufficient to achieve antiviral efficacy, possibly augmented by other factors such as the immune system.


Asunto(s)
Antivirales/farmacología , Antivirales/farmacocinética , ADN Primasa/antagonistas & inhibidores , AdnB Helicasas/antagonistas & inhibidores , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1 , Piridinas/farmacología , Piridinas/farmacocinética , Tiazoles/farmacología , Tiazoles/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Farmacorresistencia Viral , Femenino , Herpes Simple/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedades Cutáneas Virales/tratamiento farmacológico , Enfermedades Cutáneas Virales/patología , Sulfonamidas , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
4.
J Pharmacol Toxicol Methods ; 103: 106693, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32276047

RESUMEN

INTRODUCTION: Development of agonistic analgesic drugs requires proof of selectivity in vivo attainable by selective antagonists or several knockdown strategies. The Kv7.2 potassium channel encoded by the KCNQ2 gene regulates neuronal excitability and its activation inhibits nociceptive transmission. Although it is a potentially attractive target for analgesics, no clinically approved Kv7.2 agonists are currently available and selectivity of drug candidates is hard to demonstrate in vivo due to the expenditure to generate KCNQ2 knockout animals and the lack of Kv7.2 selective antagonists. The present study describes the set-up of an RNA interference-based model that allows studying the selectivity of Kv7.2 openers. METHODS: Adeno-associated virus (AAV) vectors were used to deliver the expression cassette for a short hairpin RNA targeting KCNQ2. Heat nociception was tested in rats after intrathecal AAV treatment. RESULTS: Surprisingly, screening of AAV serotypes revealed serotype 7, which has rarely been explored, to be best suited for transduction of dorsal root ganglia neurons following intrathecal injection. Knockdown of the target gene was confirmed by qRT-PCR and the anti-nociceptive effect of a Kv7.2 agonist was found to be completely abolished by the treatment. DISCUSSION: We consider this approach not only to be suitable to study the selectivity of novel analgesic drugs targeting Kv7.2, but rather to serve as a general fast and simple method to generate functional and phenotypic knockdown animals during drug discovery for central and peripheral pain targets.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Analgésicos , Animales , Benzamidas , Técnicas de Silenciamiento del Gen , Masculino , Neuronas , Nociceptores , Piridinas , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA