Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Pathog ; 11(5): e1004901, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25973608

RESUMEN

Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Varicellovirus/fisiología , Animales , Línea Celular , Cercopithecinae , Varicela/inmunología , Varicela/metabolismo , Varicela/patología , Varicela/virología , ADN Recombinante/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 3/inmunología , Herpesvirus Humano 3/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad Innata , Interferón Tipo I/antagonistas & inhibidores , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/antagonistas & inhibidores , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/metabolismo , Factores de Transcripción STAT/genética , Varicellovirus/inmunología
2.
J Virol ; 89(19): 9817-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178993

RESUMEN

UNLABELLED: Like varicella-zoster virus (VZV), simian varicella virus (SVV) reactivates to produce zoster. In the present study, 5 rhesus macaques were inoculated intrabronchially with SVV, and 5 months later, 4 monkeys were immunosuppressed; 1 monkey was not immunosuppressed but was subjected to the stress of transportation. In 4 monkeys, a zoster rash developed 7 to 12 weeks after immunosuppression, and a rash also developed in the monkey that was not immunosuppressed. Analysis at 24 to 48 h after zoster revealed SVV antigen in the lung alveolar wall, in ganglionic neurons and nonneuronal cells, and in skin and in lymph nodes. In skin, SVV was found primarily in sweat glands. In lymph nodes, the SVV antigen colocalized mostly with macrophages, dendritic cells, and, to a lesser extent, T cells. The presence of SVV in lymph nodes, as verified by quantitative PCR detection of SVV DNA, might reflect the sequestration of virus by macrophages and dendritic cells in lymph nodes or the presentation of viral antigens to T cells to initiate an immune response against SVV, or both. IMPORTANCE: VZV causes varicella (chickenpox), becomes latent in ganglia, and reactivates to produce zoster and multiple other serious neurological disorders. SVV in nonhuman primates has proved to be a useful model in which the pathogenesis of the virus parallels the pathogenesis of VZV in humans. Here, we show that SVV antigens are present in sweat glands in skin and in macrophages and dendritic cells in lymph nodes after SVV reactivation in monkeys, raising the possibility that macrophages and dendritic cells in lymph nodes serve as antigen-presenting cells to activate T cell responses against SVV after reactivation.


Asunto(s)
Herpes Zóster/patología , Herpes Zóster/virología , Ganglios Linfáticos/virología , Varicellovirus/fisiología , Activación Viral/fisiología , Animales , Chlorocebus aethiops , ADN Viral/análisis , Células Dendríticas/virología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Terapia de Inmunosupresión , Ganglios Linfáticos/citología , Macaca mulatta , Macrófagos/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Piel/patología , Piel/virología , Linfocitos T/virología , Células Vero
3.
J Virol ; 87(5): 2979-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269790

RESUMEN

Ganglia of monkeys with reactivated simian varicella virus (SVV) contained more CD8 than CD4 T cells around neurons. The abundance of CD8 T cells was greater less than 2 months after reactivation than that at later times and correlated with that of CXCL10 RNA but not with those of SVV protein or open reading frame 61 (ORF61) antisense RNA. CXCL10 RNA colocalized with T-cell clusters. After SVV reactivation, transient T-cell infiltration, possibly mediated by CXCL10, parallels varicella zoster virus (VZV) reactivation in humans.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/metabolismo , Ganglios/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Neuronas/inmunología , Varicellovirus/inmunología , Varicellovirus/metabolismo , Varicellovirus/fisiología , Animales , Linfocitos T CD8-positivos/metabolismo , ADN Viral/genética , Ganglios/metabolismo , Ganglios/virología , Infecciones por Herpesviridae/genética , Macaca fascicularis , Neuronas/virología , Sistemas de Lectura Abierta , ARN sin Sentido/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Varicellovirus/genética , Carga Viral , Activación Viral , Latencia del Virus/genética
4.
J Neurovirol ; 20(3): 309-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24549971

RESUMEN

Like varicella zoster virus in humans, simian varicella virus (SVV) becomes latent in ganglionic neurons along the entire neuraxis and reactivates in immunosuppressed monkeys. Five rhesus macaques were inoculated with SVV; 142 days later (latency), four monkeys were immunosuppressed, and T cells were analyzed for naïve, memory, and effector phenotypes and expression of programmed death receptor-1 (PD-1; T cell exhaustion). All T cell subsets decreased during immunosuppression and except for CD8 effectors, peaked 2 weeks before zoster. Compared to before immunosuppression, PD-1 expression increased at reactivation. Increased T cells before zoster is likely due to virus reactivation.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Herpes Zóster/inmunología , Herpesvirus Humano 3/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Envejecimiento/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Glucocorticoides/farmacología , Herpes Zóster/patología , Memoria Inmunológica/inmunología , Inmunosupresores/farmacología , Macaca mulatta , Prednisona/farmacología , Activación Viral/inmunología
5.
J Neurovirol ; 20(5): 526-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25139181

RESUMEN

Simian varicella virus (SVV) infection of non-human primates models human varicella zoster virus (VZV) infection. Assessment of cell signaling immune responses in monkeys after primary SVV infection, after immunosuppression and during reactivation revealed strong pro-inflammatory responses and lesser anti-inflammatory components during varicella and reactivation. Pro-inflammatory mediators elevated during varicella included interferon-gamma (IFN-γ), interleukin (IL)-6, monocyte chemoattractant protein (MCP-1), interferon inducible T-cell α chemoattractant protein (I-TAC), interferon processing protein (IP-10), and anti-inflammatory interleukin-1 Receptor antagonist (IL-1Ra). After immunosuppression and at reactivation, levels of pro-inflammatory mediators MCP-1, eotaxin, IL-6, IL-8, MIF, RANTES (regulated-on-activation normal T-cell expressed and secreted), and HGF (hepatocyte growth factor) were elevated, as was the anti-inflammatory mediator IL-1Ra. Characterization of cytokine, chemokine and growth factor responses during different stages of varicella virus infection will facilitate immunotherapeutic and vaccine strategies.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Activación Viral/inmunología , Latencia del Virus/inmunología , Animales , Quimiocinas/inmunología , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/virología , Macaca mulatta , Masculino , Varicellovirus/fisiología
6.
J Virol ; 86(11): 6345-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22438547

RESUMEN

We previously constructed a recombinant monoclonal antibody (rec-MAb 63P4) that detects immediate-early protein IE63 encoded by varicella-zoster virus (VZV) in the cytoplasm of productively infected cells. Here, we used ORF63 truncation mutants to map the rec-MAb 63P4 binding epitope to amino acids 141 to 150 of VZV IE63, a region not shared with other widely used anti-IE63 antibodies, and found that the recombinant antibody does not bind to the simian IE63 counterpart.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Epítopos de Linfocito B/inmunología , Herpesvirus Humano 3/inmunología , Proteínas Inmediatas-Precoces/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Mapeo Epitopo , Herpesvirus Humano 3/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Datos de Secuencia Molecular , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/genética
7.
J Neurovirol ; 19(1): 75-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23233078

RESUMEN

In vitro analyses of varicella zoster virus (VZV) reactivation from latency in human ganglia have been hampered by the inability to isolate virus by explantation or cocultivation techniques. Furthermore, attempts to study interaction of VZV with neurons in experimentally infected ganglion cells in vitro have been impaired by the presence of nonneuronal cells, which become productively infected and destroy the cultures. We have developed an in vitro model of VZV infection in which highly pure (>95 %) terminally differentiated human neurons derived from pluripotent stem cells were infected with VZV. At 2 weeks post-infection, infected neurons appeared healthy compared to VZV-infected human fetal lung fibroblasts (HFLs), which developed a cytopathic effect (CPE) within 1 week. Tissue culture medium from VZV-infected neurons did not produce a CPE in uninfected HFLs and did not contain PCR-amplifiable VZV DNA, but cocultivation of infected neurons with uninfected HFLs did produce a CPE. The nonproductively infected neurons contained multiple regions of the VZV genome, as well as transcripts and proteins corresponding to VZV immediate-early, early, and late genes. No markers of the apoptotic caspase cascade were detected in healthy-appearing VZV-infected neurons. VZV infection of highly pure terminally differentiated human neurons provides a unique in vitro system to study the VZV-neuronal relationship and the potential to investigate mechanisms of VZV reactivation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Herpesvirus Humano 3/fisiología , Neuronas/virología , Activación Viral/fisiología , Latencia del Virus/fisiología , Diferenciación Celular , Herpes Zóster/virología , Humanos , Inmunohistoquímica , Neuronas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Neurovirol ; 18(2): 91-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22399159

RESUMEN

Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 10³ plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash.


Asunto(s)
Varicela/virología , Ganglios/virología , Herpesvirus Humano 3/fisiología , Viremia/virología , Inmunidad Adaptativa , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Varicela/inmunología , Varicela/patología , ADN Viral/biosíntesis , Modelos Animales de Enfermedad , Exantema , Ganglios/inmunología , Ganglios/patología , Humanos , Macaca mulatta , Piel/virología , Linfocitos T/inmunología , Linfocitos T/virología , Viremia/inmunología , Viremia/patología , Latencia del Virus
9.
J Virol ; 84(23): 12454-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20861271

RESUMEN

Studies of varicella-zoster virus gene expression during latency require the acquisition of human ganglia at autopsy. Concerns have been raised that the virus might reactivate immediately after death. Because features of varicella-zoster virus latency are similar in primate and human ganglia, we examined virus gene expression in tissues either processed immediately or kept at 4°C for 30 h before necropsy of two monkeys inoculated with simian varicella-zoster virus and euthanized 117 days later. Virus transcription and the detection of open reading frame (ORF) 63 protein in the cytoplasm of neurons were comparable. Thus, a 30-h delay after death did not affect varicella-zoster virus expression in latently infected ganglia.


Asunto(s)
Varicela/fisiopatología , Ganglios/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 3/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Latencia del Virus/fisiología , Animales , Varicela/metabolismo , Herpesvirus Humano 3/metabolismo , Inmunohistoquímica , Macaca mulatta , Neuronas/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Viremia/sangre
10.
PLoS Pathog ; 5(11): e1000657, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19911054

RESUMEN

Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Herpesviridae , Macaca mulatta/virología , Varicellovirus/patogenicidad , Animales , Linfocitos B/inmunología , Proliferación Celular , ADN Viral/análisis , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Herpesvirus Humano 3 , Humanos , Inmunohistoquímica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Varicellovirus/genética , Carga Viral
11.
J Neurovirol ; 17(3): 274-80, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21479719

RESUMEN

Simian varicella virus (SVV) open reading frame (ORF) 63, duplicated in the virus genome as ORF 70, is homologous to varicella zoster virus ORF 63/70. Transfection of bacterial artificial chromosome clones containing the wild-type SVV genome and mutants with stop codons in ORF 70, in both ORFs 63 and 70 and the repaired virus DNA sequences into Vero cells produced a cytopathic effect (CPE). The onset of CPE was much slower with the double-mutant transfectants (10 days vs. 3 days) and plaques were smaller. While SVV ORF 63 is not required for replication in culture, its expression leads to robust virus replication.


Asunto(s)
Varicela/genética , Varicela/virología , Cromosomas Artificiales Bacterianos/genética , Herpesvirus Humano 3/genética , Sistemas de Lectura Abierta , Animales , Secuencia de Bases , Chlorocebus aethiops , Cromosomas Artificiales Bacterianos/metabolismo , Efecto Citopatogénico Viral/genética , ADN Viral/genética , Genes Virales , Genoma Viral , Herpesvirus Humano 3/metabolismo , Datos de Secuencia Molecular , Mutación , Transfección , Células Vero , Replicación Viral/genética
12.
J Virol ; 83(18): 9273-82, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19605493

RESUMEN

Simian varicella virus (SVV) causes varicella in primates, becomes latent in ganglionic neurons, and reactivates to produce zoster. SVV produces a cytopathic effect in monkey kidney cells in tissue culture. To study the mechanism by which SVV-infected cells die, we examined markers of apoptosis 24 to 64 h postinfection (hpi). Western blot analysis of virus-infected cell lysates revealed a significant increase in the levels of the cleaved active form of caspase-3, accompanied by a parallel increase in caspase-3 activity at 40 to 64 hpi. Caspase-9, a marker for the intrinsic pathway, was activated significantly in SVV-infected cells at all time points, whereas trace levels of the active form of caspase-8, an extrinsic pathway marker, was detected only at 64 hpi. Bcl-2 expression at the mRNA and protein levels was decreased by 50 to 70% throughout the course of virus infection. Release of cytochrome c, an activator of caspase-9, from mitochondria into the cytoplasm was increased by 200% at 64 hpi. Analysis of Vero cells infected with SVV expressing green fluorescent protein (SVV-GFP) at 64 hpi revealed colocalization of the active forms of caspase-3 and caspase-9 and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining with GFP. A significant decrease in the bcl-2 mRNA levels along with an abundance of mRNA specific for SVV genes 63, 40, and 21 was seen in the fraction of Vero cells that were infected with SVV-GFP. Together, these findings indicate that SVV induces apoptosis in cultured Vero cells through the intrinsic pathway in which Bcl-2 is downregulated.


Asunto(s)
Apoptosis , Riñón/virología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Varicellovirus/patogenicidad , Animales , Caspasas/metabolismo , Varicela/patología , Chlorocebus aethiops , Regulación hacia Abajo/genética , Haplorrinos , Riñón/patología , ARN Mensajero/análisis , Factores de Tiempo , Células Vero
13.
J Neurovirol ; 16(5): 342-54, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20822371

RESUMEN

Simian varicella virus (SVV) infection of primates resembles human varicella-zoster virus (VZV) infection. After primary infection, SVV becomes latent in ganglia and reactivates after immunosuppression or social and environmental stress. Herein, natural SVV infection was established in 5 cynomolgus macaques (cynos) and 10 African green (AG) monkeys. Four cynos were treated with the immunosuppressant tacrolimus (80 to 300 μg/kg/day) for 4 months and 1 was untreated (group 1). Four AG monkeys were exposed to a single dose (200 cGy) of x-irradiation (group 2), and 4 other AG monkeys were irradiated and treated with tacrolimus for 4 months (group 3); the remaining 2 AG monkeys were untreated. Zoster rash developed 1 to 2 weeks after tacrolimus treatment in 3 of 4 monkeys in group 1, 6 weeks after irradiation in 1 of 4 monkeys in group 2, and 1 to 2 weeks after irradiation in all 4 monkeys in group 3. All monkeys were euthanized 1 to 4 months after immunosuppression. SVV antigens were detected immunohistochemically in skin biopsies as well as in lungs of most monkeys. Low copy number SVV DNA was detected in ganglia from all three groups of monkeys, including controls. RNA specific for SVV ORFs 61, 63, and 9 was detected in ganglia from one immunosuppressed monkey in group 1. SVV antigens were detected in multiple ganglia from all immunosuppressed monkeys in every group, but not in controls. These results indicate that tacrolimus treatment produced reactivation in more monkeys than irradiation and tacrolimus and irradiation increased the frequency of SVV reactivation as compared to either treatment alone.


Asunto(s)
Varicela/inducido químicamente , Herpes Zóster/virología , Herpesvirus Humano 3/fisiología , Inmunosupresores/farmacología , Tacrolimus/farmacología , Activación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Macaca fascicularis , Activación Viral/efectos de la radiación , Latencia del Virus
14.
J Neurovirol ; 16(2): 133-40, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20345323

RESUMEN

Varicella-zoster virus infects multiple human and monkey cells in culture. The mode of cell death appears to be autophagy or apoptosis. Analysis of VZV-infected human melanoma (MeWo) cells revealed that Bcl-2 mRNA and protein levels were decreased significantly 64 and 72 hpi (hours post infection), accompanied by the release of cytochrome c from mitochondria into the cytoplasm. Western blot analysis of virus-infected cells revealed activation of caspase-8, a marker for the extrinsic pathway of apoptosis, and caspase-9, a marker for the intrinsic pathway of apoptosis at 64 and 72 hpi. Significant increases in the levels of cleaved caspase-3 and cleaved poly (ADP) ribose polymerase (PARP) were also seen at the height of cytopathic effect. Thus VZV induces apoptosis in MeWo cells in which Bcl-2 is down-regulated. Future studies will determine differences in the cascade of apoptotic events in non-neuronal cells compared to neurons that allow VZV to become latent.


Asunto(s)
Apoptosis/fisiología , Herpesvirus Humano 3/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Western Blotting , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Neurol Sci ; 343(1-2): 195-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24923742

RESUMEN

A 72-year-old man developed clinical features of giant cell arteritis (GCA) and ipsilateral ophthalmic-distribution zoster, followed within 2 weeks by VZV encephalitis and 2 months later by ischemic optic neuropathy. Temporal artery biopsy was histopathologically negative for GCA, but contained VZV antigen and VZV DNA in multiple non-contiguous (skip) areas. The collective clinical and laboratory findings revealed a remarkably close temporal association of zoster, multifocal VZV vasculopathy with temporal artery infection, biopsy-negative VZV-positive GCA and VZV encephalitis.


Asunto(s)
Encefalitis por Varicela Zóster/complicaciones , Arteritis de Células Gigantes/complicaciones , Neuropatía Óptica Isquémica/complicaciones , Anciano , Herpesvirus Humano 3/patogenicidad , Humanos , Masculino , Arterias Temporales/diagnóstico por imagen , Arterias Temporales/patología , Ultrasonografía Doppler
18.
Virology ; 368(1): 50-9, 2007 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17651776

RESUMEN

SVV infection of primates closely resembles VZV infection of humans. Like VZV, SVV becomes latent in ganglionic neurons. We used this model to study the effect of immunosuppression on varicella reactivation. Cynomolgus monkeys latently infected with SVV were irradiated and treated with tacrolimus and prednisone. Of four latently infected monkeys that were immunosuppressed and subjected to the stress of transportation and isolation, one developed zoster, and three others developed features of subclinical reactivation. Another non-immunosuppressed latently infected monkey that was subjected to the same stress of travel and isolation showed features of subclinical reactivation. Virus reactivation was confirmed not only by the occurrence of zoster in one monkey, but also by the presence of late SVV RNA in ganglia, and the detection of SVV DNA in non-ganglionic tissue, and SVV antigens in skin, ganglia and lung.


Asunto(s)
Varicela/inmunología , Varicela/virología , Varicellovirus/inmunología , Varicellovirus/fisiología , Activación Viral , Animales , Varicela/patología , ADN Viral/análisis , Ganglios/patología , Ganglios/virología , Terapia de Inmunosupresión , Inmunosupresores/administración & dosificación , Inmunosupresores/farmacología , Pulmón/patología , Pulmón/virología , Macaca fascicularis , Prednisona/administración & dosificación , Prednisona/farmacología , ARN Viral/análisis , Piel/patología , Piel/virología , Estrés Psicológico , Tacrolimus/administración & dosificación , Tacrolimus/farmacología , Rayos X
19.
Virology ; 345(1): 244-50, 2006 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-16242745

RESUMEN

Simian varicella virus (SVV) infection in primates closely resembles varicella-zoster virus (VZV) infection in humans. SVV ORF 63 has 51.6% homology at the amino acid level to VZV ORF 63. We cloned SVV ORFs 63 and 62, transcribed and translated in vitro, and immunoprecipitated the expected proteins with rabbit polyclonal antibodies. Immunoprecipitation analysis revealed that SVV ORF 63 is expressed as a 43-kDa phosphorylated protein in virus-infected cells. In both neuronal and non-neuronal cells, SVV ORF 62 protein alone upregulated the SVV 21 promoter, while SVV ORF 63 protein alone did not have any effect. SVV ORF 62-mediated transactivation of the SVV ORF 21 promoter was upregulated in neuronal cells, but downregulated in non-neuronal cells, by SVV ORF 63 protein. This is the first study in which a varicella protein (ORF 63) expressed during latency has been shown to have a differential effect on a promoter that is also active during latency, in neuronal as compared to non-neuronal cells.


Asunto(s)
Regulación Viral de la Expresión Génica , Genes Virales , Neuronas/virología , Regiones Promotoras Genéticas , Activación Transcripcional , Varicellovirus/genética , Secuencia de Aminoácidos , Animales , Fusión Artificial Génica , Línea Celular , Chlorocebus aethiops , Regulación hacia Abajo , Humanos , Proteínas Inmediatas-Precoces/genética , Luciferasas/análisis , Luciferasas/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Homología de Secuencia de Aminoácido , Regulación hacia Arriba , Varicellovirus/fisiología , Células Vero , Proteínas del Envoltorio Viral/genética
20.
J Virol ; 79(9): 5315-25, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15827146

RESUMEN

Simian varicella virus (SVV) is a neurotropic alphaherpesvirus of monkeys that is a model for varicella pathogenesis and latency. Like human varicella-zoster virus (VZV), SVV causes chicken pox (varicella), becomes latent in ganglia along the entire neuraxis, and reactivates to produce shingles (zoster). We developed macroarrays to determine the extent of viral transcription from all 70 predicted SVV open reading frames (ORFs) in infected cells in tissue culture. Cloned fragments (200 to 400 bp) from the 5' and 3' ends of each ORF were PCR amplified, quantitated, spotted onto nylon membranes, and fixed by UV cross-linking. Using a cDNA probe prepared from poly(A)+ RNA extracted from SVV-infected Vero cells at the height of the cytopathic effect (3 days after infection) and chemiluminescence for detection, transcripts corresponding to all SVV ORFs were identified. The abundance of each SVV transcript was compared with that previously demonstrated for VZV in infected tissue culture cells.


Asunto(s)
Sistemas de Lectura Abierta , Transcripción Genética , Varicellovirus/genética , Animales , Chlorocebus aethiops , ADN Viral/genética , Infecciones por Herpesviridae/virología , Mediciones Luminiscentes , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA