Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625005

RESUMEN

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Quimiocina CCL2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/orina , Nefropatías Diabéticas/diagnóstico , Técnicas Biosensibles/métodos , Quimiocina CCL2/orina , Biomarcadores/orina , Límite de Detección , Técnicas Electroquímicas/métodos
2.
Small ; : e2312175, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534021

RESUMEN

Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.

3.
Small ; 19(45): e2303026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394706

RESUMEN

Plasmonic biosensing is a label-free detection method that is commonly used to measure various biomolecular interactions. However, one of the main challenges in this approach is the ability to detect biomolecules at low concentrations with sufficient sensitivity and detection limits. Here, 2D ferroelectric materials are employed to address the issues with sensitivity in biosensor design. A plasmonic sensor based on Bi2 O2 Se nanosheets, a ferroelectric 2D material, is presented for the ultrasensitive detection of the protein molecule. Through imaging the surface charge density of Bi2 O2 Se, a detection limit of 1 fM is achieved for bovine serum albumin (BSA). These findings underscore the potential of ferroelectric 2D materials as critical building blocks for future biosensor and biomaterial architectures.

4.
Phys Chem Chem Phys ; 25(48): 32863-32867, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38048069

RESUMEN

[CH3NH3][Co(HCOO)3] is the first perovskite-like metal-organic framework exhibiting spin-driven magnetoelectric effects. However, the high-pressure tuning effects on the magnetic properties and crystal structure of [CH3NH3][Co(HCOO)3] have not been studied. In this work, alongside ac magnetic susceptibility measurements, we investigate the magnetic transition temperature evolution under high pressure. Upon increasing the pressure from atmospheric pressure to 0.5 GPa, TN (15.2 K) remains almost unchanged. Continuing to compress the sample results in TN gradually decreasing to 14.8 K at 1.5 GPa. This may be due to pressure induced changes in the bond distance and bond angle of the O-C-O superexchange pathway. In addition, by using high pressure powder X-ray diffraction and Raman spectroscopy, we conducted in-depth research on the pressure dependence of the lattice parameters and Raman modes of [CH3NH3][Co(HCOO)3]. The increase in pressure gives rise to a phase transition from the orthorhombic Pnma to a monoclinic phase at approximately 6.13 GPa. Our study indicates that high pressure can profoundly alter the crystal structure and magnetic properties of perovskite type MOF materials, which could inspire new endeavors in exploring novel phenomena in compressed metal-organic frameworks.

5.
Inorg Chem ; 61(25): 9631-9637, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35696435

RESUMEN

Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.

6.
Nanotechnology ; 31(9): 095703, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31711048

RESUMEN

It involves invariably strong expectations and a tough challenge to explore lightweight microwave absorption materials with high efficiency and agile tenability. Here, we successfully synthesized CoFex@Co nanoparticles embedded into a carbon matrix that was directly derived from the metal organic frameworks (MOFs) via a facile method. Benefiting from the unique multi-dimensional construction and synergistic effects of carbon material with magnetic nanoparticles in both the electromagnetic energy loss and impedance matching, CoFe0.26@Co@C composite exhibited excellent microwave absorption performance, which showed a minimum reflection loss of -62.5 dB at the thickness of 1.5 mm and a broad absorption bandwidth of 14.7 GHz exceeding -10 dB at the thickness range of 1.4 to 5 mm. This study not only provides a reference for future preparation of MOF-based lightweight microwave absorption materials, but also offers the possible application owing to its simple procedure and outstanding absorption properties.

7.
Nanotechnology ; 30(3): 035701, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30418944

RESUMEN

Black phosphorus (BP) has recently drawn great attention in the field of electrocatalysis due to its distinct electrocatalytic activity for the oxygen evolution reaction (OER). However, the slow OER kinetics and the poor environmental stability of BP seriously limits its overall OER performance and prevents its electrocatalysis application. Here, sulfur (S)-doped BP nanosheets, which are prepared using high-pressure synthesis followed by liquid exfoliation, have been demonstrated to have much better OER electrocatalytic activity and environmental stability compared to their undoped counterparts. The S-doped BP nanosheets display a Tafel slope of 75 mV dec-1, which is a favorable value refered to the kinetics of OER in electrochemical tests. Notably, there is no degradation of S-doped BP nanosheets after six days exposure to ambient, indicating an excellent environmental stability of the S-doped BP. The density functional theory calculations show that the OER activity of BP originate from its crystal defects and heteroatom S doping can effectively enhance its OER activity and stability. These results highlight the doping effect on electrocatalytic activities and stability of BP and provide a simple and effective method to design highly efficient OER catalysts based on the modification of BP.

8.
Nanotechnology ; 30(34): 345203, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31108474

RESUMEN

In two-dimensional layered materials, layer number and stacking order have strong effects on the optical and electronic properties. Tungsten disulfide (WS2) crystal, as one important member among transition metal dichalcogenides, has been usually prepared in a layered 2H prototype structure with space group P63/mmc ([Formula: see text]) in spite of many other expected ones such as 3R. Here, we report simultaneous growth of 2H and 3R stacked multilayer (ML) WS2 crystals in large scale by chemical vapor deposition and effects of layer number and stacking order on optical and electronic properties. As revealed in Raman and photoluminescence (PL) measurements, with an increase in layer number, 2H and 3R stacked ML WS2 crystals show similar variation of PL and Raman peaks in position and intensity. Compared to 2H stacked ML WS2, however, 3R stacked one always exhibits the larger red (blue) shift of Raman [Formula: see text] (A1g) peak and the appearance of PL A, B and I peaks at lower energies. Thereby, PL and Raman features depend on not only layer number but also stacking order. In addition, circularly polarized luminescence from two prototype WS2 crystals under circularly polarized excitation has also been investigated, showing obvious spin or valley polarization of these CVD-grown multilayer WS2 crystals.

9.
Nanotechnology ; 29(2): 025704, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29131811

RESUMEN

In this work, hierarchical architecture MoS2/CNT nanohybrids synthesized by the hydrothermal method, with different CNT proportions are systematically investigated for their microwave absorption. MoS2 nanoflowers are anchored uniformly on the surface of a CNT when the proportion of the MoS2/CNT nanohybrids was 10:2, and the reflection loss can attain -20 dB in the range of 3.4-13.9 GHz with multiple thicknesses from 1.5-5.0 mm, while an optimal consequence of -46 dB can be reached at 6.6 GHz at 2.9 mm. The excellent performance indicates that the MoS2/CNT = 10:2 nanohybrids have the potential for use as microwave absorbing materials.

10.
Nanotechnology ; 29(8): 085401, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29350193

RESUMEN

In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

11.
Nanotechnology ; 29(23): 235604, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29558364

RESUMEN

Through a facile self-assembled process, an ultralight reduced graphene oxide/black phosphorus (rGO/BP) composite aerogel was successfully fabricated. The BP nanosheets were homogeneously distributed throughout the rGO 3D framework, and the interfaces between rGO and BP possessed four kinds of interconnections, such as wrapping, wearing, bridging and weak linking. As an ultralight composite, the rGO/BP aerogel could easily stand on the stamen of a flower. Compared with pure rGO aerogel, the rGO/BP composite aerogel exhibited enhanced microwave absorption ability. The minimum reflection loss value of -46.9 dB with a thickness of 2.53 mm was obtained, and a wide absorption band of 6.1 GHz (RL < -10 dB) was achieved. The superior microwave absorption property was demonstrated to stem from the interfacial polarization loss mechanism in which the multiform interface interactions between the rGO skeleton and BP nanosheets played critical roles. The rGO/BP aerogel has great potential to be used as an ultralight microwave absorber.

12.
Nanotechnology ; 29(40): 405703, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30010614

RESUMEN

Nanostructure composites of ferromagnetic materials embedded in nanoporous carbon (NC) derived from metal-organic frameworks (MOFs) have attracted enormous attention due to their potential application in many fields, such as microwave absorption, energy storage, and conversion. The rational design of nanocomposites holds a determinant factor for overcoming the challenges involving the microwave absorption performance. Herein, CoS2/NC, CoP/NC, and CoS2-xPx/NC with a rhombic dodecahedral structure have been successfully fabricated by using the template cobalt-based MOFs (ZIF-67). A morphology analysis indicates that ferromagnetic nanoparticles are embedded in NC matrix. It is obvious that the rhombic dodecahedron can be maintained after the phosphorization and sulfurization of Co/NC derived from the thermal decomposition of ZIF-67. The microwave absorption performance can obviously be improved by the phosphorization and sulfurization of Co/NC. CoS2-xPx/NC exhibits an excellent microwave absorption property and the minimum reflection loss (RL) of CoS2-xPx/NC can reach -68 dB at 14.6 GHz with a thickness of 1.5 mm. An RL value less than -10 dB can be achieved in the microwave frequency range of 12.7-17.3 GHz (4.6 GHz) with a thickness of 1.5 mm for CoS2-xPx/NC. This article offers a novel way to fabricate cobalt-based materials/carbon composites for an excellent microwave absorber.

13.
Nanotechnology ; 29(25): 255705, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29620537

RESUMEN

Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 µm in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics.

14.
ACS Sens ; 9(4): 2134-2140, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626725

RESUMEN

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Asunto(s)
ADN , ADN/química , Compuestos de Tungsteno/química , Microscopía/métodos
15.
Adv Sci (Weinh) ; : e2402819, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958507

RESUMEN

2D van der Waals (vdW) magnets have recently emerged as a promising material system for spintronic device innovations due to their intriguing phenomena in the reduced dimension and simple integration of magnetic heterostructures without the restriction of lattice matching. However, it is still challenging to realize Curie temperature far above room temperature and controllable magnetic anisotropy for spintronics application in 2D vdW magnetic materials. In this work, the pressure-tuned dome-like ferromagnetic-paramagnetic phase diagram in an iron-based 2D layered ferromagnet Fe3GaTe2 is reported. Continuously tunable magnetic anisotropy from out-of-plane to in-plane direction is achieved via the application of pressure. Such behavior is attributed to the competition between intralayer and interlayer exchange interactions and enhanced DOS near the Fermi level. The study presents the prominent properties of pressure-engineered 2D ferromagnetic materials, which can be used in the next-generation spintronic devices.

16.
J Colloid Interface Sci ; 651: 938-947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37579668

RESUMEN

Ultrasensitive and rapid detection of biomarkers is among the upmost priorities in promoting healthcare advancements. Improved sensitivity of photonic sensors based on two-dimensional (2D) materials have brought exciting prospects for achieving real-time and label-free biosensing at dilute target concentrations. Here, we report a high-sensitivity surface plasmon resonance (SPR) RNA sensor using metallic 2D GeP5 nanosheets as the sensing material. Theoretical evaluations revealed that the presence of GeP5 nanosheets can greatly enhance the plasmonic electric field of the Au film thereby boosting sensing sensitivity, and that optimal sensitivity (146° RIU-1) can be achieved with 3-nm-thick GeP5. By functionalizing GeP5 nanosheets with specific cDNA probes, detection of SARS-CoV-2 RNA sequences were achieved using the GeP5-based SPR sensor, with high sensitivity down to a detection limit of 10 aM and excellent selectivity. This work demonstrates the immense potential of GeP5-based SPR sensors for advanced biosensing applications and paves the way for utilizing GeP5 nanosheets in novel sensor devices.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , Resonancia por Plasmón de Superficie/métodos , ARN Viral , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas Biosensibles/métodos
17.
Inorg Chem ; 51(9): 5164-72, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22486213

RESUMEN

Investigations are performed on low-temperature oxygen diffusion in the carbon vacancy ordered ZrC(0.6)and thus induced formation of the oxygen atom ordered ZrC(0.6)O(0.4). Theoretically, a superstructure of Zr(2)CO can be constructed via the complete substitution of carbon vacancies with O atoms in the Zr(2)C model. In the ordered ZrC(0.6), the consecutive arrangement of vacancies forms the vacancy channels along some zone axes in the C sublattice. Through these vacancy channels, the thermally activated oxygen diffusion is significantly facilitated. The oxygen atoms diffuse directly into and occupy the vacancies, producing the ordered ZrC(0.6)O(0.4). Relative to the ordered ZrC(0.6), the Zr positions are finely tuned in the ordered ZrC(0.6)O(0.4) because of the ionic Zr-O bonds. Because of this fine adjustment of Zr positions and the presence of oxygen atoms, the superstructural reflections are always observable in a selected area electron diffraction (SAED) pattern, despite the invisibility of superstructural reflections in ZrC(0.6) along some special zone axes. Similar to the vacancies in ordered ZrC(0.6), the ordering arrangement of O atoms in the ordered ZrC(0.6)O(0.4) is in nanoscale length, thus forming the nano superstructural domains with irregular shapes.

18.
J Phys Condens Matter ; 34(48)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36174548

RESUMEN

Pressure, as an independent thermodynamic parameter, is an effective tool to obtain novel material system and exotic physical phenomena not accessible at ambient conditions, because it profoundly modifies the charge, orbital and spin state by reducing the interatomic distance in crystal structure. However, the studies of magnetoelectricity and multiferroicity are rarely extended to high pressure dimension due to properties measured inside the high pressure vessel being a challenge. Here we reported the temperature-magnetic field-pressure magnetoelectric (ME) phase diagram of Y type hexaferrite Ba0.4Sr1.6Mg2Fe12O22derived from static pyroelectric current measurement and dynamic magnetodielectric in diamond anvil cell and piston cylinder cell. We found that a new spin-driven ferroelectric phase emerged atP= 0.7 GPa and sequentially ME effect disappeared aroundP= 4.3 GPa. The external pressure may enhance easy plane anisotropy to destabilize the longitudinal conical magnetic structure with the suppression of ME coefficient. These results offer essential clues for the correlation between ME effect and magnetic structure evolution under high pressure.

19.
Nat Commun ; 12(1): 3870, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162881

RESUMEN

Emerging two-dimensional (2D) layered materials have been attracting great attention as sensing materials for next-generation high-performance biological and chemical sensors. The sensor performance of 2D materials is strongly dependent on the structural defects as indispensable active sites for analyte adsorption. However, controllable defect engineering in 2D materials is still challenging. In the present work, we propose exploitation of controllably grown polycrystalline films of 2D layered materials with high-density grain boundaries (GBs) for design of ultra-sensitive ion sensors, where abundant structural defects on GBs act as favorable active sites for ion adsorption. As a proof-of-concept, our fabricated surface plasmon resonance sensors with GB-rich polycrystalline monolayer WS2 films have exhibited high selectivity and superior attomolar-level sensitivity in Hg2+ detection owing to high-density GBs. This work provides a promising avenue for design of ultra-sensitive sensors based on GB-rich 2D layered materials.

20.
ACS Appl Mater Interfaces ; 13(40): 47560-47571, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597012

RESUMEN

GeP5, as the most representative phosphorus-based material in two-dimensional layered phosphorous compounds, has shown a fairly bright application prospect in the field of energy storage because of its ultrahigh electrical conductivity. However, high-yield exfoliation methods and effective structure construction strategies for GeP5 nanosheets are still missing, which completely restricts the further application of GeP5-based nanocomposites. Here, we not only improved the yield of GeP5 nanosheets by a liquid nitrogen-assisted liquid-phase exfoliation technique but also constructed the GeP5@RuO2 nanocomposites with the 0D/2D heterostructure by in situ introduction of ultrafine RuO2 nanoparticles on highly conductive GeP5 nanosheets using a simple hydrothermal synthesis method, and then applying it to micro-supercapacitors (MSCs) as electrode materials through a mask-assisted vacuum filtration technique. It is precisely because of the synergy of the electrical double-layer material, GeP5 nanosheets and the pseudocapacitance material RuO2 nanoparticles that endows the GeP5@RuO2 electrode with outstanding electrochemical performance in micro-supercapacitors with a large specific capacitance of 129.5 mF cm-2/107.9 F cm-3, high energy density of 17.98 µWh cm-2, remarkable long-term cycling stability with 98.4% capacitance retention after 10 000 cycles, the exceptional mechanical stability, outstanding environmental stability, and excellent integration features. This work opens up a new avenue to construct GeP5-based nanocomposites as a most promising novel electrode material for practical application in flexible portable/wearable micro-nanoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA