Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 286(34): 30034-46, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21737454

RESUMEN

Endoglin (CD105), a transmembrane protein of the transforming growth factor ß superfamily, plays a crucial role in angiogenesis. Mutations in endoglin result in the vascular defect known as hereditary hemorrhagic telangiectasia (HHT1). The soluble form of endoglin was suggested to contribute to the pathogenesis of preeclampsia. To obtain further insight into its function, we cloned, expressed, purified, and characterized the extracellular domain (ECD) of mouse and human endoglin fused to an immunoglobulin Fc domain. We found that mouse and human endoglin ECD-Fc bound directly, specifically, and with high affinity to bone morphogenetic proteins 9 and 10 (BMP9 and BMP10) in surface plasmon resonance (Biacore) and cell-based assays. We performed a function mapping analysis of the different domains of endoglin by examining their contributions to the selectivity and biological activity of the protein. The BMP9/BMP10 binding site was localized to the orphan domain of human endoglin composed of the amino acid sequence 26-359. We established that endoglin and type II receptors bind to overlapping sites on BMP9. In the in vivo chick chorioallantoic membrane assay, the mouse and the truncated human endoglin ECD-Fc both significantly reduced VEGF-induced vessel formation. Finally, murine endoglin ECD-Fc acted as an anti-angiogenic factor that decreased blood vessel sprouting in VEGF/FGF-induced angiogenesis in in vivo angioreactors and reduced the tumor burden in the colon-26 mouse tumor model. Together our findings indicate an important role of soluble endoglin ECD in the regulation of angiogenesis and highlight efficacy of endoglin-Fc as a potential anti-angiogenesis therapeutic agent.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antígenos CD/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/genética , Inhibidores de la Angiogénesis/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Sitios de Unión , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proteínas Morfogenéticas Óseas/genética , Línea Celular , Endoglina , Factor 2 de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 105(19): 7082-7, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18460605

RESUMEN

Diseases that affect the regulation of bone turnover can lead to skeletal fragility and increased fracture risk. Members of the TGF-beta superfamily have been shown to be involved in the regulation of bone mass. Activin A, a TGF-beta signaling ligand, is present at high levels in bone and may play a role in the regulation of bone metabolism. Here we demonstrate that pharmacological blockade of ligand signaling through the high affinity receptor for activin, type II activin receptor (ActRIIA), by administration of the soluble extracellular domain of ActRIIA fused to a murine IgG2a-Fc, increases bone formation, bone mass, and bone strength in normal mice and in ovariectomized mice with established bone loss. These observations support the development of this pharmacological strategy for the treatment of diseases with skeletal fragility.


Asunto(s)
Receptores de Activinas Tipo II/farmacología , Huesos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores de Activinas Tipo II/administración & dosificación , Receptores de Activinas Tipo II/aislamiento & purificación , Animales , Fenómenos Biomecánicos , Resorción Ósea , Línea Celular , Femenino , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/farmacología , Vértebras Lumbares/efectos de los fármacos , Ratones , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Solubilidad/efectos de los fármacos
3.
Nat Struct Mol Biol ; 11(10): 968-74, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15378031

RESUMEN

The APS, SH2-B and LNK proteins are adapters that activate and modulate receptor tyrosine kinase and JAK/STAT signaling. We now show that a conserved N-terminal domain mediates APS homodimerization. We determined the crystal structure of the dimerization domain at a resolution of 1.7 A using bromide ion MAD phasing. Each molecule contributes two helices to a compact four-helix bundle having a bisecting-U topology. Its most conspicuous feature is a stack of interdigitated phenylalanine side chains at the domain core. These residues create a new motif we refer to as a 'phenylalanine zipper,' which is critical to dimerization. A newly developed bridging yeast tri-hybrid assay showed that APS dimerizes JAK2, insulin receptor and IGF1 receptor kinases using its SH2 and dimerization domains. Dimerization via the phenylalanine zipper domain provides a mechanism for activating and modulating tyrosine kinase activity even in the absence of extracellular ligands.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Fenilalanina/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/química , Dimerización , Humanos , Fenilalanina/química , Conformación Proteica
4.
Mol Cell Biol ; 25(7): 2607-21, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15767667

RESUMEN

The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Línea Celular , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Dimerización , Activación Enzimática , Humanos , Janus Quinasa 2 , Ratones , Proteínas de la Leche/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotirosina/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/química , Estructura Cuaternaria de Proteína , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción STAT5 , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
J Bone Miner Res ; 25(12): 2633-46, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20533325

RESUMEN

Cancers that grow in bone, such as myeloma and breast cancer metastases, cause devastating osteolytic bone destruction. These cancers hijack bone remodeling by stimulating osteoclastic bone resorption and suppressing bone formation. Currently, treatment is targeted primarily at blocking bone resorption, but this approach has achieved only limited success. Stimulating osteoblastic bone formation to promote repair is a novel alternative approach. We show that a soluble activin receptor type IIA fusion protein (ActRIIA.muFc) stimulates osteoblastogenesis (p < .01), promotes bone formation (p < .01) and increases bone mass in vivo (p < .001). We show that the development of osteolytic bone lesions in mice bearing murine myeloma cells is caused by both increased resorption (p < .05) and suppression of bone formation (p < .01). ActRIIA.muFc treatment stimulates osteoblastogenesis (p < .01), prevents myeloma-induced suppression of bone formation (p < .05), blocks the development of osteolytic bone lesions (p < .05), and increases survival (p < .05). We also show, in a murine model of breast cancer bone metastasis, that ActRIIA.muFc again prevents bone destruction (p < .001) and inhibits bone metastases (p < .05). These findings show that stimulating osteoblastic bone formation with ActRIIA.muFc blocks the formation of osteolytic bone lesions and bone metastases in models of myeloma and breast cancer and paves the way for new approaches to treating this debilitating aspect of cancer.


Asunto(s)
Activinas/metabolismo , Neoplasias Óseas/complicaciones , Resorción Ósea/etiología , Resorción Ósea/prevención & control , Osteogénesis , Transducción de Señal , Animales , Neoplasias Óseas/patología , Neoplasias Óseas/fisiopatología , Neoplasias Óseas/secundario , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Calcificación Fisiológica/efectos de los fármacos , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Mieloma Múltiple/complicaciones , Mieloma Múltiple/patología , Mieloma Múltiple/fisiopatología , Trasplante de Neoplasias , Tamaño de los Órganos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Osteólisis/sangre , Osteólisis/complicaciones , Osteólisis/fisiopatología , Osteólisis/prevención & control , Paraproteínas/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos
6.
J Biol Chem ; 279(34): 35298-305, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15199052

RESUMEN

Inhibitory serine phosphorylation is a potential molecular mechanism for insulin resistance. We have developed a new variant of the yeast two-hybrid method, referred to as disruptive yeast tri-hybrid (Y3H), to identify inhibitory kinases and sites of phosphorylation in insulin receptors (IR) and IR substrates, IRS-1. Using IR and IRS-1 as bait and prey, respectively, and c-Jun NH(2)-terminal kinase (JNK1) as the disruptor, we now show that phosphorylation of IRS-1 Ser-307, a previously identified site, is necessary but not sufficient for JNK1-mediated disruption of IR/IRS-1 binding. We further identify a new phosphorylation site, Ser-302, and show that this too is necessary for JNK1-mediated disruption. Seven additional kinases potentially linked to insulin resistance similarly block IR/IRS-1 binding in the disruptive Y3H, but through distinct Ser-302- and Ser-307-independent mechanisms. Phosphospecific antibodies that recognize sequences surrounding Ser(P)-302 or Ser(P)-307 were used to determine whether the sites were phosphorylated under relevant conditions. Phosphorylation was promoted at both sites in Fao hepatoma cells by reagents known to promote Ser/Thr phosphorylation, including the phorbol ester phorbol 12-myristate 13-acetate, anisomycin, calyculin A, and insulin. The antibodies further showed that Ser(P)-302 and Ser(P)-307 are increased in animal models of obesity and insulin resistance, including genetically obese ob/ob mice, diet-induced obesity, and upon induction of hyperinsulinemia. These findings demonstrate that phosphorylation at both Ser-302 and Ser-307 is necessary for JNK1-mediated inhibition of the IR/IRS-1 interaction and that Ser-302 and Ser-307 are phosphorylated in parallel in cultured cells and in vivo under conditions that lead to insulin resistance.


Asunto(s)
Resistencia a la Insulina , Fosfoproteínas , Animales , Hiperinsulinismo/etiología , Hiperinsulinismo/metabolismo , Proteínas Sustrato del Receptor de Insulina , Ratones , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptor de Insulina/metabolismo , Saccharomyces cerevisiae , Serina , Técnicas del Sistema de Dos Híbridos
7.
J Biol Chem ; 277(20): 17381-4, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-11901143

RESUMEN

The nuclear lamins form a two-dimensional matrix that provides integrity to the cell nucleus and participates in nuclear activities. Mutations in the region of human LMNA encoding the carboxyl-terminal tail Lamin A/C are associated with forms of muscular dystrophy and familial partial lipodystrophy (FPLD). To help discriminate tissue-specific phenotypes, we have solved at 1.4-A resolution the three-dimensional crystal structure of the lamin A/C globular tail. The domain adopts a novel, all beta immunoglobulin-like fold. FPLD-associated mutations cluster within a small surface, whereas muscular dystrophy-associated mutations are distributed throughout the protein core and on its surface. These findings distinguish myopathy- and lipodystrophy-associated mutations and provide a structural framework for further testing hypotheses concerning lamin function.


Asunto(s)
Proteínas Nucleares/química , Secuencia de Aminoácidos , Animales , Anélidos , Anuros , Cristalografía por Rayos X , Dípteros , Peces , Humanos , Lamina Tipo A , Laminas , Lipodistrofia/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Distrofias Musculares/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido
8.
J Biol Chem ; 277(2): 1531-7, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11606564

RESUMEN

Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.


Asunto(s)
Insulina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Receptor de Insulina/metabolismo , Animales , Anisomicina/farmacología , Antibacterianos/farmacología , Línea Celular , Humanos , Proteínas Sustrato del Receptor de Insulina , Proteína Quinasa 8 Activada por Mitógenos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Técnicas del Sistema de Dos Híbridos
9.
J Biol Chem ; 278(10): 8460-7, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12493740

RESUMEN

Grb10 has been proposed to inhibit or activate insulin signaling, depending on cellular context. We have investigated the mechanism by which full-length hGrb10gamma inhibits signaling through the insulin receptor substrate (IRS) proteins. Overexpression of hGrb10gamma in CHO/IR cells and in differentiated adipocytes significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. Inhibition occurred rapidly and was sustained for 60 min during insulin stimulation. In agreement with inhibited signaling through the IRS/PI 3-kinase pathway, we found hGrb10gamma to both delay and reduce phosphorylation of Akt at Thr(308) and Ser(473) in response to insulin stimulation. Decreased phosphorylation of IRS-1/2 may arise from impaired catalytic activity of the receptor, since hGrb10gamma directly associates with the IR kinase regulatory loop. However, yeast tri-hybrid studies indicated that full-length Grb10 blocks association between IRS proteins and IR, and that this requires the SH2 domain of Grb10. In cells, hGrb10gamma inhibited insulin-stimulated IRS-1 tyrosine phosphorylation in a dose-dependent manner, but did not affect IR catalytic activity toward Tyr(972) in the juxtamembrane region and Tyr(1158/1162/1163) in the regulatory domain. We conclude that binding of hGrb10gamma to IR decreases signaling through the IRS/PI 3-kinase/AKT pathway by physically blocking IRS access to IR.


Asunto(s)
Insulina/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cartilla de ADN , Proteína Adaptadora GRB10 , Humanos , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas c-akt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA