Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29336889

RESUMEN

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación Missense , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Cell ; 150(5): 987-1001, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939624

RESUMEN

HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Mapeo de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Humanos , Luciferasas de Renilla/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estabilidad Proteica , Proteoma/análisis , Receptores de Esteroides/metabolismo , Alineación de Secuencia , Termodinámica , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
PLoS Biol ; 19(6): e3001281, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34077419

RESUMEN

Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates.


Asunto(s)
Autofagia , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de Unión a Tacrolimus/metabolismo , Familia-src Quinasas/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Ratones , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
4.
Mol Ther ; 30(2): 621-631, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547468

RESUMEN

Cancer cells evade immune detection via programmed cell death 1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions that inactivate T cells. PD-1/PD-L1 blockade has become an important therapy in the anti-cancer armamentarium. However, some patients do not benefit from PD-1/PD-L1 blockade despite expressing PD-L1. Here, we screened 101 gastric cancer (GC) patients at diagnosis and 141 healthy control subjects and reported one such subpopulation of GC patients with rs17718883 polymorphism in PD-L1, resulting in a nonsense P146R mutation. We detected rs17718883 in 44% of healthy control subjects, and rs17718883 was associated with a low susceptibility to GC and better prognosis in GC patients. Structural analysis suggests that the mutation weakens the PD-1:PD-L1 interaction. This was supported by co-culture experiments of T cells, with GC cells showing that the P146R substitution results in interferon (IFN)-γ secretion by T cells and enables T cells to suppress GC cell growth. Similar results with animal gastric tumor models were obtained in vivo. PD-1 monoclonal antibody treatment did not enhance the inhibitory effect of T cells on GC cells expressing PD-L1P146Rin vitro or in vivo. This study suggests that rs17718883 is common and may be used as a biomarker for exclusion from PD-1/PD-L1 blockade therapy.


Asunto(s)
Neoplasias Gástricas , Animales , Antígeno B7-H1/metabolismo , Humanos , Inmunoterapia , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Linfocitos T/metabolismo
5.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251410

RESUMEN

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Movimiento Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Ensayos de Selección de Medicamentos Antitumorales , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacocinética , Proteómica , Ratas , Relación Estructura-Actividad , Pez Cebra , Neoplasias Pancreáticas
6.
J Org Chem ; 87(1): 125-136, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34962124

RESUMEN

Quinazolin-dione-N-3-alklyl derivatives are the core scaffolds for several categories of bioactive small molecules, but current synthetic methods are costly, involve environmental hazards, and are not uniformly scalable. Here, we report an inexpensive, flexible, and scalable method for the one-pot synthesis of substituted quinazolin-dione-N-3-alkyls (isomers of isatoic-8-secondary amides (IASAs)) from isatin that take advantage of in situ capture of imidic acid under acidic conditions. We further show that this method can be used for the synthesis of a wide variety of derivatives with medicinal uses.


Asunto(s)
Amidas , Química Farmacéutica , Catálisis , Oxazinas
7.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806100

RESUMEN

Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Bioensayo , Rastreo Diferencial de Calorimetría , Fluorometría/métodos , Estabilidad Proteica
8.
J Biol Chem ; 295(6): 1565-1574, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914413

RESUMEN

Interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-4, as well as transforming growth factor ß-activated kinase 1 (TAK1), are protein kinases essential for transducing inflammatory signals from interleukin receptors. IRAK family proteins and TAK1 have high sequence identity within the ATP-binding pocket, limiting the development of highly selective IRAK-1/4 or TAK1 inhibitors. Beyond kinase activity, IRAKs and TAK1 act as molecular scaffolds along with other signaling proteins, complicating the interpretation of experiments involving knockin or knockout approaches. In contrast, pharmacological manipulation offers the promise of targeting catalysis-mediated signaling without grossly disrupting the cellular architecture. Recently, we reported the discovery of takinib, a potent and highly selective TAK1 inhibitor that has only marginal activity against IRAK-4. On the basis of the TAK1-takinib complex structure and the structure of IRAK-1/4, here we defined critical contact sites of the takinib scaffold within the nucleotide-binding sites of each respective kinase. Kinase activity testing of takinib analogs against IRAK-4 identified a highly potent IRAK-4 inhibitor (HS-243). In a kinome-wide screen of 468 protein kinases, HS-243 had exquisite selectivity toward both IRAK-1 (IC50 = 24 nm) and IRAK-4 (IC50 = 20 nm), with only minimal TAK1-inhibiting activity (IC50 = 0.5 µm). Using HS-243 and takinib, we evaluated the consequences of cytokine/chemokine responses after selective inhibition of IRAK-1/4 or TAK1 in response to lipopolysaccharide challenge in human rheumatoid arthritis fibroblast-like synoviocytes. Our results indicate that HS-243 specifically inhibits intracellular IRAKs without TAK1 inhibition and that these kinases have distinct, nonredundant signaling roles.


Asunto(s)
Benzamidas/farmacología , Bencimidazoles/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Modelos Moleculares , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/inmunología , Células THP-1
9.
J Biol Chem ; 294(38): 13964-13972, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31341022

RESUMEN

RAS regulation and signaling are largely accomplished by direct protein-protein interactions, making RAS protein dynamics a critical determinant of RAS function. Here, we report a crystal structure of GDP-bound KRASV14I, a mutated KRAS variant associated with the developmental RASopathy disorder Noonan syndrome (NS), at 1.5-1.6 Å resolution. The structure is notable for revealing a marked extension of switch 1 away from the G-domain and nucleotide-binding site of the KRAS protein. We found that this extension is associated with a loss of the magnesium ion and a tilt in the position of the guanine base because of the additional carbon introduced by the isoleucine substitution. Hydrogen-deuterium exchange MS analysis confirmed that this conformation occurs in solution, but also disclosed a difference in kinetics when compared with KRASA146T, another RAS mutant that displays a nearly identical conformation in previously reported crystal structures. This conformational change contributed to a high rate of guanine nucleotide-exchange factor (GEF)-dependent and -independent nucleotide exchange and to an increase in affinity for SOS Ras/Rac GEF 1 (SOS1), which appears to be the major mode of activation for this RAS variant. These results highlight a mechanistic connection between KRASA146T and KRASV14I that may have implications for the regulation of these variants and for the development of therapeutic strategies to manage KRAS variant-associated disorders.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/ultraestructura , Sitios de Unión , Cristalografía por Rayos X/métodos , Activación Enzimática , GTP Fosfohidrolasas/ultraestructura , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Cinética , Modelos Moleculares , Síndrome de Noonan/metabolismo , Nucleótidos/metabolismo , Polimorfismo de Nucleótido Simple , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Biochemistry ; 57(3): 324-333, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29235861

RESUMEN

KRAS switch loop movements play a crucial role in regulating RAS signaling, and alteration of these sensitive dynamics is a principal mechanism through which disease-associated RAS mutations lead to aberrant RAS activation. Prior studies suggest that despite a high degree of sequence similarity, the switches in KRAS are more dynamic than those in HRAS. We determined X-ray crystal structures of the rare tumorigenic KRAS mutants KRASD33E, in switch 1 (SW1), and KRASA59G, in switch 2 (SW2), bound to GDP and found these adopt nearly identical, open SW1 conformations as well as altered SW2 conformations. KRASA59G bound to a GTP analogue crystallizes in the same conformation. This open conformation is consistent with the inactive "state 1" previously observed for HRAS bound to GTP. For KRASA59G, switch rearrangements may be regulated by increased flexibility in the 57DXXGQ61 motif at codon 59. However, loss of interactions between side chains at codons 33 and 35 in the SW1 33DPT35 motif drives changes for KRASD33E. The 33DPT35 motif is conserved for multiple members of the RAS subfamily but is not found in RAB, RHO, ARF, or Gα families, suggesting that dynamics mediated by this motif may be important for determining the selectivity of RAS-effector interactions. Biochemically, the consequence of altered switch dynamics is the same, showing impaired interaction with the guanine exchange factor SOS and loss of GAP-dependent GTPase activity. However, interactions with the RBD of RAF are preserved. Overall, these observations add to a body of evidence suggesting that HRAS and KRAS show meaningful differences in functionality stemming from differential protein dynamics independent of the hypervariable region.


Asunto(s)
Mutación , Proteínas Proto-Oncogénicas p21(ras)/química , Codón , Cristalización , Cristalografía por Rayos X , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
11.
J Biol Chem ; 292(1): 112-120, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872191

RESUMEN

Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Dioxolanos/farmacología , Gutatión-S-Transferasa pi/química , Gutatión-S-Transferasa pi/metabolismo , Glutatión/metabolismo , Neoplasias Pancreáticas/patología , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Unión Proteica , Conformación Proteica , Células Tumorales Cultivadas
12.
Nat Chem Biol ; 12(6): 452-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110680

RESUMEN

Serine is both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical pathway of glucose-derived serine synthesis, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic toward PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we used a quantitative high-throughput screen to identify small-molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and we suggest that one-carbon unit wasting thus may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.


Asunto(s)
Carbono/metabolismo , Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carbono/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Femenino , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Estructura Molecular , Fosfoglicerato-Deshidrogenasa/metabolismo , Purinas/biosíntesis , Serina/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Timidina/biosíntesis , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Bioorg Med Chem ; 25(3): 838-846, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011204

RESUMEN

TAK1 (transforming growth factor-ß-activated kinase 1) is an essential intracellular mediator of cytokine and growth factor signaling and a potential therapeutic target for the treatment of immune diseases and cancer. Herein we report development of a series of 2,4-disubstituted pyrimidine covalent TAK1 inhibitors that target Cys174, a residue immediately adjacent to the 'DFG-motif' of the kinase activation loop. Co-crystal structures of TAK1 with candidate compounds enabled iterative rounds of structure-based design and biological testing to arrive at optimized compounds. Lead compounds such as 2 and 10 showed greater than 10-fold biochemical selectivity for TAK1 over the closely related kinases MEK1 and ERK1 which possess an equivalently positioned cysteine residue. These compounds are smaller, more easily synthesized, and exhibit a different spectrum of kinase selectivity relative to previously reported macrocyclic natural product TAK1 inhibitors such as 5Z-7-oxozeanol.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
14.
Bioorg Med Chem ; 25(4): 1320-1328, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28038940

RESUMEN

Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles. Compound 5 exhibited the greatest potency in RAS-mutated and wild-type RAS cell lines from various cancer types. A biotinylated derivative of 5, 27, was used to verify TAK1 binding in cells. The newly described inhibitors constitute useful tools for further development of multi-targeting TAK1-centered inhibitors for cancer and other diseases.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
15.
Future Oncol ; 13(3): 263-271, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27728979

RESUMEN

RAS mutations are among the most common genetic alterations found in cancerous tumors but rational criteria or strategies for targeting RAS-dependent tumors are only recently emerging. Clinical and laboratory data suggest that patient selection based on specific RAS mutations will be an essential component of these strategies. A thorough understanding of the biochemical and structural properties of mutant RAS proteins form the theoretical basis for these approaches. Direct inhibition of KRAS G12C by covalent inhibitors is a notable recent example of the RAS mutation-tailored approach that establishes a paradigm for other RAS mutation-centered strategies.


Asunto(s)
Terapia Molecular Dirigida , Mutación , Neoplasias/genética , Neoplasias/terapia , Proteínas ras/genética , Alelos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Neoplasias/diagnóstico , Neoplasias/mortalidad , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Isoformas de Proteínas , Proteínas ras/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(24): 8895-900, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889603

RESUMEN

Directly targeting oncogenic V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras) with small-molecule inhibitors has historically been considered prohibitively challenging. Recent reports of compounds that bind directly to the K-Ras G12C mutant suggest avenues to overcome key obstacles that stand in the way of developing such compounds. We aim to target the guanine nucleotide (GN)-binding pocket because the natural contents of this pocket dictate the signaling state of K-Ras. Here, we characterize the irreversible inhibitor SML-8-73-1 (SML), which targets the GN-binding pocket of K-Ras G12C. We report a high-resolution X-ray crystal structure of G12C K-Ras bound to SML, revealing that the compound binds in a manner similar to GDP, forming a covalent linkage with Cys-12. The resulting conformation renders K-Ras in the open, inactive conformation, which is not predicted to associate productively with or activate downstream effectors. Conservation analysis of the Ras family GN-binding pocket reveals variability in the side chains surrounding the active site and adjacent regions, especially in the switch I region. This variability may enable building specificity into new iterations of Ras and other GTPase inhibitors. High-resolution in situ chemical proteomic profiling of SML confirms that SML effectively discriminates between K-Ras G12C and other cellular GTP-binding proteins. A biochemical assay provides additional evidence that SML is able to compete with millimolar concentrations of GTP and GDP for the GN-binding site.


Asunto(s)
Acetamidas/química , Genes ras , Guanosina Difosfato/análogos & derivados , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química , Sitios de Unión , Biotina/química , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , GTP Fosfohidrolasas/química , Proteínas de Unión al GTP/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Ligandos , Modelos Moleculares , Mutación , Fosfatidilinositol 3-Quinasas/química , Unión Proteica , Conformación Proteica , Proteómica , Transducción de Señal
17.
Nat Chem Biol ; 10(12): 1006-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326665

RESUMEN

Her3 (also known as ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be 'undruggable' using ATP-competitive small molecules because it lacks appreciable kinase activity. Here we report what is to our knowledge the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3-dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3-dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and ∼60 other pseudokinases found in human cells.


Asunto(s)
Acrilamidas/farmacología , Adenina/análogos & derivados , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/química , Receptor ErbB-2/química , Receptor ErbB-3/antagonistas & inhibidores , Acrilamidas/síntesis química , Adamantano/química , Adenina/síntesis química , Adenina/farmacología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Antineoplásicos/síntesis química , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisteína/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/síntesis química , Multimerización de Proteína , Proteolisis , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/genética , Transducción de Señal
18.
Bioorg Med Chem Lett ; 25(16): 3382-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26094118

RESUMEN

Her3 is a member of the human epidermal growth factor receptor (EGFR) tyrosine kinase family, and it is often either overexpressed or deregulated in many types of human cancer. Her3 has not been the subject of small-molecule inhibitor development because it is a pseudokinase and does not possess appreciable kinase activity. We recently reported on the development of the first selective irreversible Her3 ligand (TX1-85-1) that forms a covalent bond with cysteine 721 which is unique to Her3 among all kinases. We also developed a bi-functional compound (TX2-121-1) containing a hydrophobic adamantane moiety and the same warhead of TX1-85-1 that is capable of inhibiting Her3-dependent signaling and growth. Here we report on the structure-based medicinal chemistry effort that resulted in the discovery of these two compounds.


Asunto(s)
Acrilamidas/síntesis química , Acrilamidas/farmacología , Adenina/análogos & derivados , Sistemas de Liberación de Medicamentos , Pirazoles/síntesis química , Pirazoles/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Receptor ErbB-3/antagonistas & inhibidores , Acrilamidas/química , Adenina/síntesis química , Adenina/química , Adenina/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Pirazoles/química , Pirimidinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
19.
Angew Chem Int Ed Engl ; 53(1): 199-204, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24259466

RESUMEN

We report the synthesis of a GDP analogue, SML-8-73-1, and a prodrug derivative, SML-10-70-1, which are selective, direct-acting covalent inhibitors of the K-Ras G12C mutant relative to wild-type Ras. Biochemical and biophysical measurements suggest that modification of K-Ras with SML-8-73-1 renders the protein in an inactive state. These first-in-class covalent K-Ras inhibitors demonstrate that irreversible targeting of the K-Ras guanine-nucleotide binding site is potentially a viable therapeutic strategy for inhibition of Ras signaling.


Asunto(s)
Dominio Catalítico/genética , Proteínas ras/química , Proteínas ras/genética , Diseño de Fármacos , Transducción de Señal , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA