Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proteins ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884545

RESUMEN

Histidine kinases (HKs) are a central part of bacterial environmental-sensing two-component systems. They provide their hosts with the ability to respond to a wide range of physical and chemical signals. HKs are multidomain proteins consisting of at least a sensor domain, dimerization and phosphorylation domain (DHp), and a catalytic domain. They work as homodimers and the existence of two different autophosphorylation mechanisms (cis and trans) has been proposed as relevant for pathway specificity. Although several HKs have been intensively studied, a precise sequence-to-structure explanation of why and how either cis or trans phosphorylation occurs is still unavailable nor is there any evolutionary analysis on the subject. In this work, we show that AlphaFold can accurately determine whether an HK dimerizes in a cis or trans structure. By modeling multiple HKs we show that both cis- and trans-acting HKs are common in nature and the switch between mechanisms has happened multiple times in the evolutionary history of the family. We then use AlphaFold modeling to explore the molecular determinants of the phosphorylation mechanism. We conclude that it is the difference in lengths of the helices surrounding the DHp loop that determines the mechanism. We also show that very small changes in these helices can cause a mechanism switch. Despite this, previous evidence shows that for a particular HK the phosphorylation mechanism is conserved. This suggests that the phosphorylation mechanism participates in system specificity and mechanism switching provides these systems with a way to diverge.

2.
Glycobiology ; 34(1)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37944064

RESUMEN

During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.


Asunto(s)
COVID-19 , Saccharomycetales , Vacunas , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , Prueba de COVID-19 , Pichia/genética , Pichia/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Recombinantes/química , Vacunas/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales
3.
J Chem Inf Model ; 60(2): 833-842, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31923359

RESUMEN

Histidine kinases (HK) of bacterial two-component systems represent a hallmark of allosterism in proteins, being able to detect a signal through the sensor domain and transmit this information through the protein matrix to the kinase domain which, once active, autophosphorylates a specific histidine residue. Inactive-to-active transition results in a large conformational change that moves the kinase on top of the histidine. In the present work, we use several molecular simulation techniques (Molecular Dynamics, Hybrid QM/MM, and constant pH molecular dynamics) to study the activation and autophosphorylation reactions in L. plantarum WalK, a cis-acting HK. In agreement with previous results, we show that the chemical step requires tight coupling with the conformational step in order to maintain the histidine phosphoacceptor in the correct tautomeric state, with a reactive δ-nitrogen. During the conformational transition, the kinase domain is never released and walks along the HK helix axis, breaking and forming several conserved residue-based contacts. The phosphate transfer reaction is concerted in the transition state region and is catalyzed through the stabilization of the negative developing charge of transferring phosphate along the reaction.


Asunto(s)
Histidina Quinasa/química , Histidina Quinasa/metabolismo , Simulación de Dinámica Molecular , Teoría Cuántica , Concentración de Iones de Hidrógeno , Lactobacillus plantarum/enzimología , Fosforilación , Conformación Proteica , Termodinámica
4.
Biochim Biophys Acta Gen Subj ; 1861(12): 3178-3189, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935608

RESUMEN

BACKGROUND: Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. METHODS: We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-ß-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. RESULTS AND CONCLUSIONS: The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. GENERAL SIGNIFICANCE: Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport.


Asunto(s)
Microtúbulos/fisiología , Peroxisomas/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Drosophila , Fluidez de la Membrana , beta-Ciclodextrinas/farmacología
5.
Biochim Biophys Acta ; 1850(1): 169-77, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25452214

RESUMEN

BACKGROUND: Myoglobin (Mb) and neuroglobin (Ngb) are representative members of pentacoordinated and bis-histidyl, hexacoordinated globins. In spite of their low sequence identity, they show surprisingly similar three-dimensional folds. The ability of Ngb to form a hexacoordinated bis-histidyl complex with the distal HisE7 has a strong impact on ligand affinity. The factors governing such different behaviors have not been completely understood yet, even though they are extremely relevant to establish structure-function relationships within the globin superfamily. METHODS: In this work we generated chimeric proteins by swapping a previously identified regulatory segment - the CD region - and evaluated comparatively the structural and functional properties of the resulting proteins by molecular dynamics simulations, and spectroscopic and kinetic investigations. RESULTS: Our results show that chimeric proteins display heme coordination properties displaced towards those expected for the corresponding CD region. In particular, in the absence of exogenous ligands, chimeric Mb is found as a partially hexacoordinated bis-histidyl species, whereas chimeric Ngb shows a lower equilibrium constant for forming a hexacoordinated bis-histidyl species. CONCLUSIONS: While these results confirm the regulatory role of the CD region for bis-histidyl hexacoordination, they also suggest that additional sources contribute to fine tune the equilibrium. General significance Globins constitute a ubiquitous group of heme proteins widely found in all kingdoms of life. These findings raise challenging questions regarding the structure-function relationships in these proteins, as bis-histidyl hexacoordination emerges as a novel regulatory mechanism of the physiological function of globins.


Asunto(s)
Globinas/química , Mioglobina/química , Proteínas del Tejido Nervioso/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Globinas/genética , Globinas/metabolismo , Hemo/química , Hemo/metabolismo , Humanos , Ligandos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mioglobina/genética , Mioglobina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Homología de Secuencia de Aminoácido , Espectrofotometría
6.
Environ Microbiol ; 17(5): 1765-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25297625

RESUMEN

Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaPAz ) had an unexpected growth-promoting and stress-protecting effect in Escherichia coli, suggesting it could have chaperone-like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaPAz was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaPAz in E. coli strains and to study the role of PhaPAz in in vivo protein folding and aggregation. PhaPAz was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaPAz or with the known chaperone GroELS. These results demonstrate that PhaPAz has chaperone-like functions both in vitro and in vivo in E. coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers.


Asunto(s)
Chaperonas Moleculares/metabolismo , Lectinas de Plantas/metabolismo , Polihidroxialcanoatos/metabolismo , Pliegue de Proteína , Azotobacter/genética , Azotobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/química
7.
Biophys J ; 106(12): 2625-35, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24940780

RESUMEN

The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 µm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.


Asunto(s)
Fenómenos Biofísicos , Rastreo Celular/métodos , Filamentos Intermedios/metabolismo , Melanóforos/citología , Melanóforos/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Algoritmos , Animales , Supervivencia Celular , Análisis de Fourier , Proteínas Asociadas a Microtúbulos/metabolismo , Xenopus laevis
8.
Anal Chem ; 85(21): 10262-9, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23952708

RESUMEN

Azanone (HNO, nitroxyl) is a highly reactive and short-lived compound with intriguing and highly relevant properties. It has been proposed to be a reaction intermediate in several chemical reactions and an in vivo, endogenously produced key metabolite and/or signaling molecule. In addition, its donors have important pharmacological properties. Therefore, given its relevance and elusive nature (it reacts with itself very quickly), the development of reliable analytical methods for quantitative HNO detection is in high demand for the advancement of future research in this area. During the past few years, several methods were developed that rely on chemical reactions followed by mass spectrometry, high-performance liquid chromatography, UV-vis, or fluorescence-trapping-based methodologies. In this work, our recently developed HNO-sensing electrode, based on the covalent attachment of cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl] porphyrin [Co(P)] to a gold electrode, has been thoroughly characterized in terms of sensibility, accuracy, time-resolved detection, and compatibility with complex biologically compatible media. Our results show that the Co(P) electrode: (i) allows time-resolved detection and kinetic analysis of the electrode response (the underlying HNO-producing reactions can be characterized) (ii) is able to selectively detect and reliably quantify HNO in the 1-1000 nM range, and (iii) has good biological media compatibility (including cell culture), displaying a lack of spurious signals due to the presence of O2, NO, and other reactive nitrogen and oxygen species. In summary, the Co(P) electrode is to our knowledge the best prospect for use in studies investigating HNO-related chemical and biological reactions.


Asunto(s)
Técnicas Electroquímicas/métodos , Óxidos de Nitrógeno/análisis , Cromatografía Líquida de Alta Presión , Fluorescencia , Cinética , Límite de Detección , Espectrometría de Masas , Espectrofotometría Ultravioleta
9.
J Med Chem ; 65(14): 9691-9705, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737472

RESUMEN

Computer-aided drug discovery methods play a major role in the development of therapeutically important small molecules, but their performance needs to be improved. Molecular dynamics simulations in mixed solvents are useful in understanding protein-ligand recognition and improving molecular docking predictions. In this work, we used ethanol as a cosolvent to find relevant interactions for ligands toward protein kinase G, an essential protein of Mycobacterium tuberculosis (Mtb). We validated the hot spots by screening a database of fragment-like compounds and another one of known kinase inhibitors. Next, we performed a pharmacophore-guided docking simulation and found three low micromolar inhibitors, including one with a novel chemical scaffold that we expanded to four derivative compounds. Binding affinities were characterized by intrinsic fluorescence quenching assays, isothermal titration calorimetry, and the analysis of melting curves. The predicted binding mode was confirmed by X-ray crystallography. Finally, the compounds significantly inhibited the viability of Mtb in infected THP-1 macrophages.


Asunto(s)
Mycobacterium tuberculosis , Sitios de Unión , Proteínas Quinasas Dependientes de GMP Cíclico , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología
10.
Biochemistry ; 48(50): 11939-49, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19899811

RESUMEN

Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) leads to ionic strength-dependent hetero-oligomerization even at the lowest concentrations measurable. Titration experiments followed by light scattering and native gel electrophoresis show insoluble oligomeric complexes with a >or=2000 nm diameter and intermediate soluble complexes 40 and 115 nm in diameter, respectively, formed in excess of E2C. A discrete oligomeric soluble complex formed in excess of E7 displays a diameter of 12 nm. The N-terminal domain of E7 interacts with E2C with a K(D) of 0.1 muM, where the stretch of residues 25-40 of E7, encompassing both a PEST motif and phosphorylation sites, is sufficient for the interaction. Displacement of the soluble E7-E2C complex by an E2 site DNA duplex and site-directed mutagenesis indicate that the protein-protein interface involves the DNA binding helix of E2. The formation of complexes of different sizes and properties in excess of either of the viral proteins reveals a finely tuned mechanism that could regulate the intracellular levels of both proteins as infection and transformation progress. Sequestering E2 into E7-E2 oligomers provides a possible additional route to uncontrolled E7 expression, in addition and prior to the disruption of the E2 gene during viral integration into the host genome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Datos de Secuencia Molecular , Proteínas Oncogénicas Virales/antagonistas & inhibidores , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus , Estructura Terciaria de Proteína , Integración Viral , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
11.
Structure ; 14(2): 309-19, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16472750

RESUMEN

Proteasomal-mediated rapid turnover of proteins is often modulated by phosphorylation of PEST sequences. The E2 protein from papillomavirus participates in gene transcription, DNA replication, and episomal genome maintenance. Phosphorylation of a PEST sequence located in a flexible region accelerates its degradation. NMR analysis of a 29 amino acid peptide fragment derived from this region shows pH-dependent polyproline II and alpha helix structures, connected by a turn. Phosphorylation, in particular that at serine 301, disrupts the overall structure, and point mutations have either stabilizing or destabilizing effects. There is an excellent correlation between the thermodynamic stability of different peptides and the half-life of E2 proteins containing the same mutations in vivo. The structure around the PEST region appears to have evolved a marginal stability that is finely tunable by phosphorylation. Thus, conformational stability, rather than recognition of a phosphate modification, modulates the degradation of this PEST sequence by the proteasome machinery.


Asunto(s)
Proteínas de Unión al ADN/química , Modelos Moleculares , Proteínas Virales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dicroismo Circular , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Fosforilación , Ácido Poliglutámico/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas Virales/metabolismo
12.
PLoS One ; 13(8): e0202808, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138481

RESUMEN

Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily- is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn2+in the low micromolar range promotes α-helix folding, while extra Zn2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn2+. ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn2+. Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets.


Asunto(s)
Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Estrés Fisiológico , Frío , Sequías , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Solanum lycopersicum/metabolismo , Polietilenglicoles/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Desplegamiento Proteico , Trehalosa/metabolismo , Zinc/metabolismo
13.
Protein Sci ; 16(4): 744-54, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17384235

RESUMEN

The DNA binding domain of papillomavirus E2 proteins is at the center of the regulation of gene transcription and replication of the virus. Its unique fold consists of a beta-barrel domain that combines an eight-stranded dimeric beta-barrel core interface with two symmetrical DNA binding alpha-helices and other two helices, packed against the central barrel. Treatment with low amounts of trifluoroethanol readily leads to a mostly beta-sheet oligomeric species, with a loss of near-UV circular dichroism signal and increase in its ANS binding capacity, indicating that buried hydrophobic surfaces become accessible to the solvent. This species subsequently undergoes a slow transition into amyloid aggregates as determined by light scattering and Congo red and thioflavin T binding. Electron microscopy shows short amyloid fibers with a curly aspect as the end product. The amyloid route is completely prevented by addition of stoichiometrical amounts of specific DNA, strongly suggesting that unfolding of the DNA binding alpha-helix is required for the formation of the intermediate. The slow nature of this expanded beta-oligomeric species and the availability of several different conformational probes make it an excellent model for investigating amyloid mechanisms. The mild perturbation required for entering an amyloid route is indicative of a preexisting equilibrium. Oligomerization processes are required for the assembly of transcription initiation and DNA replication machineries, where proteins from different viruses must come together with host cell proteins. The E2 protein is a virus-encoded multifunctional master regulator that may exert one of its multiple functions through its ability to oligomerize.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Amiloide/química , Dicroismo Circular , Proteínas de Unión al ADN/química , Cinética , Microscopía Electrónica , Proteínas Oncogénicas Virales/química , Unión Proteica , Espectrofotometría Ultravioleta
14.
PLoS One ; 9(7): e103012, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25077609

RESUMEN

Phasins are a group of proteins associated to granules of polyhydroxyalkanoates (PHAs). Apart from their structural role as part of the PHA granule cover, different structural and regulatory functions have been found associated to many of them, and several biotechnological applications have been developed using phasin protein fusions. Despite their remarkable functional diversity, the structure of these proteins has not been analyzed except in very few studies. PhaP from Azotobacter sp. FA8 (PhaPAz) is a representative of the prevailing type in the multifunctional phasin protein family. Previous work performed in our laboratory using this protein have demonstrated that it has some very peculiar characteristics, such as its stress protecting effects in recombinant Escherichia coli, both in the presence and absence of PHA. The aim of the present work was to perform a structural characterization of this protein, to shed light on its properties. Its aminoacid composition revealed that it lacks clear hydrophobic domains, a characteristic that appears to be common to most phasins, despite their lipid granule binding capacity. The secondary structure of this protein, consisting of α-helices and disordered regions, has a remarkable capacity to change according to its environment. Several experimental data support that it is a tetramer, probably due to interactions between coiled-coil regions. These structural features have also been detected in other phasins, and may be related to their functional diversity.


Asunto(s)
Azotobacter/química , Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Cromatografía en Gel , Dicroismo Circular , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
15.
PLoS One ; 7(5): e36457, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22590549

RESUMEN

BACKGROUND: Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric "Z-nucleus" after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a "conformation editing" mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. CONCLUSION: We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the basis for the development of a promising therapeutic vaccine candidate for treating HPV cancerous lesions.


Asunto(s)
Papillomavirus Humano 16/química , Proteínas E7 de Papillomavirus/química , Multimerización de Proteína , Zinc/química , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Zinc/metabolismo
16.
PLoS One ; 6(7): e22409, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799846

RESUMEN

BACKGROUND: Human papillomavirus (HPV) is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Papillomavirus Humano 16 , Proteínas Oncogénicas Virales/química , Fragmentos de Péptidos/química , Pirroles/química , Secuencia de Aminoácidos , Antivirales/síntesis química , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Secuencia de Bases , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/uso terapéutico , ADN Viral/genética , Distamicinas/química , Papillomavirus Humano 16/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Infecciones por Papillomavirus/tratamiento farmacológico , Estructura Secundaria de Proteína , Especificidad por Sustrato
17.
PLoS One ; 6(4): e18332, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21483765

RESUMEN

The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ∼ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.


Asunto(s)
Fenómenos Mecánicos , Melanosomas/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Fenómenos Biomecánicos , Supervivencia Celular , Complejo Dinactina , Elasticidad , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Transporte de Proteínas , Viscosidad , Xenopus laevis
18.
Biopolymers ; 91(6): 432-43, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19156829

RESUMEN

Nucleic acid recognition is often mediated by alpha-helices or disordered regions that fold into alpha-helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical alpha-helix is stabilized at the N-terminus, while the PII forms at the C-terminus half of the peptide. Re-examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N-terminus half is a canonical alpha-helix, while the C-terminal half adopts a 3(10) helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 10(4)-fold lower affinity, and 500-fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained alpha-helix conformation, "presented" by this unique architecture. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 432-443, 2009.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , ADN/química , Proteínas de Unión al ADN/química , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas Oncogénicas Virales/química , Conformación Proteica , Pliegue de Proteína
19.
Phys Chem Chem Phys ; 8(19): 2249-56, 2006 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-16688307

RESUMEN

Generation of singlet molecular oxygen ((1)O(2)) by photosensitization with methylene blue (MB) supported in Nafion-Na films has been quantified by integration of the (1)O(2) emission decay at 1270 nm. The quantum yield of (1)O(2) production (Phi(Delta)) in the air-equilibrated solid phase is 0.24 +/- 0.03. Information on the (1)O(2) generation environment has been gained from complementary techniques such as UV-Vis absorption and emission spectroscopy, as well as MB fluorescence and triplet-triplet absorption decay. Results are compared with the (1)O(2) generation by MB in methanol solution (Phi(Delta) = 0.51) and in methanol-swollen Nafion films (Phi(Delta) = 0.49 +/- 0.06). Differences and similarities are discussed in terms of the factors that influence Phi(Delta) in solution and in the solid media. The optical and mechanical features of Nafion, ease of dye loading, compatibility with most solvents, homogeneity, reproducibility and stability of the photosensitizing material makes it a convenient reference for (1)O(2) generation quantum yield measurements in transparent (micro)heterogeneous and homogeneous media.


Asunto(s)
Química Física/instrumentación , Polímeros de Fluorocarbono/química , Membranas Artificiales , Azul de Metileno/química , Oxígeno/química , Oxígeno/efectos de la radiación , Fotoquímica/métodos , Química Física/métodos , Simulación por Computador , Luz , Azul de Metileno/efectos de la radiación , Modelos Químicos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA