Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stat Med ; 41(16): 3102-3130, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35522060

RESUMEN

Since its release of Version 1.0 in 1998, Joinpoint software developed for cancer trend analysis by a team at the US National Cancer Institute has received a considerable attention in the trend analysis community and it became one of most widely used software for trend analysis. The paper published in Statistics in Medicine in 2000 (a previous study) describes the permutation test procedure to select the number of joinpoints, and Joinpoint Version 1.0 implemented the permutation procedure as the default model selection method and employed parametric methods for the asymptotic inference of the model parameters. Since then, various updates and extensions have been made in Joinpoint software. In this paper, we review basic features of Joinpoint, summarize important updates of Joinpoint software since its first release in 1998, and provide more information on two major enhancements. More specifically, these enhancements overcome prior limitations in both the accuracy and computational efficiency of previously used methods. The enhancements include: (i) data driven model selection methods which are generally more accurate under a broad range of data settings and more computationally efficient than the permutation test and (ii) the use of the empirical quantile method for construction of confidence intervals for the slope parameters and the location of the joinpoints, which generally provides more accurate coverage than the prior parametric methods used. We show the impact of these changes in cancer trend analysis published by the US National Cancer Institute.


Asunto(s)
Neoplasias , Recolección de Datos , Humanos , Análisis de Regresión , Proyectos de Investigación , Programas Informáticos
2.
J Appl Stat ; 50(9): 1992-2013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378270

RESUMEN

Selecting the number of change points in segmented line regression is an important problem in trend analysis, and there have been various approaches proposed in the literature. We first study the empirical properties of several model selection procedures and propose a new method based on two Schwarz type criteria, a classical Bayes Information Criterion (BIC) and the one with a harsher penalty than BIC (BIC3). The proposed rule is designed to use the former when effect sizes are small and the latter when the effect sizes are large and employs the partial R2 to determine the weight between BIC and BIC3. The proposed method is computationally much more efficient than the permutation test procedure that has been the default method of Joinpoint software developed for cancer trend analysis, and its satisfactory performance is observed in our simulation study. Simulations indicate that the proposed method performs well in keeping the probability of correct selection at least as large as that of BIC3, whose performance is comparable to that of the permutation test procedure, and improves BIC3 when it performs worse than BIC. The proposed method is applied to the U.S. prostate cancer incidence and mortality rates.

3.
Carcinogenesis ; 33(7): 1384-90, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22523087

RESUMEN

Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10(-6), 1.6 × 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10(-5)), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Pancreáticas/genética , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple
4.
Ann Appl Stat ; 8(2): 974-998, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25544865

RESUMEN

Large case/control genome-wide association studies (GWAS) often include groups of related individuals with known relationships. When testing for associations at a given locus, current methods incorporate only the familial relationships between individuals. Here, we introduce the chromosome-based Quasi Likelihood Score (cQLS) statistic that incorporates local Identity-By-Descent (IBD) to increase the power to detect associations. In studies robust to population stratification, such as those with case/control sibling pairs, simulations show that the study power can be increased by over 50%. In our example, a GWAS examining late-onset Alzheimers disease, the p-values among the most strongly associated SNPs in the APOE gene tend to decrease, with the smallest p-value decreasing from 1.23 × 10-8 to 7.70 × 10-9. Furthermore, as a part of our simulations, we reevaluate our expectations about the use of families in GWAS. We show that, although adding only half as many unique chromosomes, genotyping affected siblings is more efficient than genotyping randomly ascertained cases. We also show that genotyping cases with a family history of disease will be less beneficial when searching for SNPs with smaller effect sizes.

5.
Nat Genet ; 45(4): 400-5, 405e1-3, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23455638

RESUMEN

We report a new method to estimate the predictive performance of polygenic models for risk prediction and assess predictive performance for ten complex traits or common diseases. Using estimates of effect-size distribution and heritability derived from current studies, we project that although 45% of the variance of height has been attributed to SNPs, a model trained on one million people may only explain 33.4% of variance of the trait. Models based on current studies allow for identification of 3.0%, 1.1% and 7.0% of the populations at twofold or higher than average risk for type 2 diabetes, coronary artery disease and prostate cancer, respectively. Tripling of sample sizes could elevate these percentages to 18.8%, 6.1% and 12.2%, respectively. The utility of polygenic models for risk prediction will depend on achievable sample sizes for the training data set, the underlying genetic architecture and the inclusion of information on other risk factors, including family history.


Asunto(s)
Algoritmos , Enfermedad/genética , Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Herencia Multifactorial/genética , Femenino , Humanos , Modelos Genéticos , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA