Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mult Scler ; 30(7): 800-811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38751221

RESUMEN

BACKGROUND: Conventional magnetic resonance imaging (MRI) does not account for all disability in multiple sclerosis. OBJECTIVE: The objective was to assess the ability of graph metrics from diffusion-based structural connectomes to explain motor function beyond conventional MRI in early demyelinating clinically isolated syndrome (CIS). METHODS: A total of 73 people with CIS underwent conventional MRI, diffusion-weighted imaging and clinical assessment within 3 months from onset. A total of 28 healthy controls underwent MRI. Structural connectomes were produced. Differences between patients and controls were explored; clinical associations were assessed in patients. Linear regression models were compared to establish relevance of graph metrics over conventional MRI. RESULTS: Local efficiency (p = 0.045), clustering (p = 0.034) and transitivity (p = 0.036) were reduced in patients. Higher assortativity was associated with higher Expanded Disability Status Scale (EDSS) (ß = 74.9, p = 0.026) scores. Faster timed 25-foot walk (T25FW) was associated with higher assortativity (ß = 5.39, p = 0.026), local efficiency (ß = 27.1, p = 0.041) and clustering (ß = 36.1, p = 0.032) and lower small-worldness (ß = -3.27, p = 0.015). Adding graph metrics to conventional MRI improved EDSS (p = 0.045, ΔR2 = 4) and T25FW (p < 0.001, ΔR2 = 13.6) prediction. CONCLUSION: Graph metrics are relevant early in demyelination. They show differences between patients and controls and have relationships with clinical outcomes. Segregation (local efficiency, clustering, transitivity) was particularly relevant. Combining graph metrics with conventional MRI better explained disability.


Asunto(s)
Conectoma , Enfermedades Desmielinizantes , Humanos , Masculino , Femenino , Adulto , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/fisiopatología , Persona de Mediana Edad , Imagen de Difusión por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Evaluación de la Discapacidad , Imagen por Resonancia Magnética , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/patología
2.
Mult Scler ; 30(4-5): 516-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372019

RESUMEN

BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Médula Cervical/patología , Esclerosis Múltiple/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/patología , Sustancia Gris/patología
3.
Mult Scler ; 29(3): 333-342, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36398585

RESUMEN

BACKGROUND: Whether genetic factors influence the long-term course of multiple sclerosis (MS) is unresolved. OBJECTIVE: To determine the influence of HLA-DRB1*1501 on long-term disease course in a homogeneous cohort of clinically isolated syndrome (CIS) patients. METHODS: One hundred seven patients underwent clinical and MRI assessment at the time of CIS and after 1, 3, 5 and 15 years. HLA-DRB1*1501 status was determined using Sanger sequencing and tagging of the rs3135388 polymorphism. Linear/Poisson mixed-effects models were used to investigate rates of change in EDSS and MRI measures based on HLA-DRB1*1501 status. RESULTS: HLA-DRB1*1501 -positive (n = 52) patients showed a faster rate of disability worsening compared with the HLA-DRB1*1501 -negative (n = 55) patients (annualised change in EDSS 0.14/year vs. 0.08/year, p < 0.025), and a greater annualised change in T2 lesion volume (adjusted difference 0.45 mL/year, p < 0.025), a higher number of gadolinium-enhancing lesions, and a faster rate of brain (adjusted difference -0.12%/year, p < 0.05) and spinal cord atrophy (adjusted difference -0.22 mm2/year, p < 0.05). INTERPRETATION: These findings provide evidence that the HLA-DRB1*1501 allele plays a role in MS severity, as measured by long-term disability worsening and a greater extent of inflammatory disease activity and tissue loss. HLA-DRB1*1501 may provide useful information when considering prognosis and treatment decisions in early relapse-onset MS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Cadenas HLA-DRB1/genética , Recurrencia Local de Neoplasia , Imagen por Resonancia Magnética , Enfermedad Crónica , Predisposición Genética a la Enfermedad
4.
Mult Scler ; 27(1): 28-38, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961242

RESUMEN

BACKGROUND: Pathology in the spinal cord of patients with primary progressive multiple sclerosis (PPMS) contributes to disability progression. We previously reported abnormal Q-space imaging (QSI)-derived indices in the spinal cord at baseline in patients with early PPMS, suggesting early neurodegeneration. OBJECTIVE: The aim was to investigate whether changes in spinal cord QSI over 3 years in the same cohort are associated with disability progression and if baseline QSI metrics predict clinical outcome. METHODS: Twenty-three PPMS patients and 23 healthy controls recruited at baseline were invited for follow-up cervical cord 3T magnetic resonance imaging (MRI) and clinical assessment after 1 year and 3 years. Cord cross-sectional area (CSA) and QSI measures were obtained, together with standard brain MRI measures. Mixed-effect models assessed MRI changes over time and their association with clinical changes. Linear regression identified baseline MRI indices associated with disability at 3 years. RESULTS: Over time, patients deteriorated clinically and showed an increase in cord QSI indices of perpendicular diffusivity that was associated with disability worsening, independently of the decrease in CSA. Higher perpendicular diffusivity and lower CSA at baseline predicted worse disability at 3 years. CONCLUSION: Increasing spinal cord perpendicular diffusivity may indicate ongoing neurodegeneration, which underpins disability progression in PPMS, independently of the development of spinal cord atrophy.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Atrofia/patología , Encéfalo/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Evaluación de la Discapacidad , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Médula Espinal/patología
5.
Mult Scler ; 26(4): 442-456, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799709

RESUMEN

BACKGROUND: Structural cortical networks (SCNs) reflect the covariance between the cortical thickness of different brain regions, which may share common functions and a common developmental evolution. SCNs appear abnormal in neurodegenerative conditions such as Alzheimer's and Parkinson's diseases, but have never been assessed in primary progressive multiple sclerosis (PPMS). OBJECTIVE: The aim of this study was to test whether SCNs are abnormal in early PPMS and change over 5 years, and correlate with disability worsening. METHODS: A total of 29 PPMS patients and 13 healthy controls underwent clinical and brain magnetic resonance imaging (MRI) assessments for 5 years. Baseline and 5-year follow-up cortical thickness values were obtained and used to build correlation matrices, considered as weighted graphs to obtain network metrics. Bootstrap-based statistics assessed SCN differences between patients and controls and between patients with fast and slow progression. RESULTS: At baseline, patients showed features of lower connectivity (p = 0.02) and efficiency (p < 0.001) than controls. Over 5 years, patients, especially those with fastest clinical progression, showed significant changes suggesting an increase in network connectivity (p < 0.001) and efficiency (p < 0.02), not observed in controls. CONCLUSION: SCNs are abnormal in early PPMS. Longitudinal SCN changes demonstrated a switch from low- to high-efficiency networks especially among fast progressors, indicating their clinical relevance.


Asunto(s)
Corteza Cerebral/patología , Progresión de la Enfermedad , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Red Nerviosa/patología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
6.
Mult Scler ; 26(13): 1647-1657, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682198

RESUMEN

BACKGROUND: Multiple sclerosis (MS) affects both brain and spinal cord. However, studies of the neuraxis with advanced magnetic resonance imaging (MRI) are rare because of long acquisition times. We investigated neurodegeneration in MS brain and cervical spinal cord using neurite orientation dispersion and density imaging (NODDI). OBJECTIVE: The aim of this study was to investigate possible alterations, and their clinical relevance, in neurite morphology along the brain and cervical spinal cord of relapsing-remitting MS (RRMS) patients. METHODS: In total, 28 RRMS patients and 20 healthy controls (HCs) underwent brain and spinal cord NODDI at 3T. Physical and cognitive disability was assessed. Individual maps of orientation dispersion index (ODI) and neurite density index (NDI) in brain and spinal cord were obtained. We examined differences in NODDI measures between groups and the relationships between NODDI metrics and clinical scores using linear regression models adjusted for age, sex and brain tissue volumes or cord cross-sectional area (CSA). RESULTS: Patients showed lower NDI in the brain normal-appearing white matter (WM) and spinal cord WM than HCs. In patients, a lower NDI in the spinal cord WM was associated with higher disability. CONCLUSION: Reduced neurite density occurs in the neuraxis but, especially when affecting the spinal cord, it may represent a mechanism of disability in MS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Médula Cervical/diagnóstico por imagen , Humanos , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Neuritas , Médula Espinal
7.
Mult Scler ; 26(7): 774-785, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31074686

RESUMEN

BACKGROUND: The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely been investigated. OBJECTIVE: To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-derived connectivity metrics can differentiate patients from controls, correlate with clinical measures, and perform better than metrics obtained with conventional single-shell protocols. METHODS: Nineteen patients within 3 months from the CIS and 12 healthy controls underwent anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and used to obtain network metrics. These were also calculated using a conventional single-shell diffusion protocol. Through linear regression, we obtained effect sizes and standardised regression coefficients. RESULTS: Patients had lower mean nodal strength (p = 0.003) and greater network modularity than controls (p = 0.045). Greater modularity was associated with worse cognitive performance in patients, even after accounting for lesion load (p = 0.002). Multi-shell-derived metrics outperformed single-shell-derived ones. CONCLUSION: Connectivity-based nodal strength and network modularity are abnormal in the CIS. Furthermore, the increased network modularity observed in patients, indicating microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging can detect potentially relevant network changes in early MS.


Asunto(s)
Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Red Nerviosa/patología , Estudios Retrospectivos , Sustancia Blanca/patología
8.
Mult Scler ; 26(9): 1093-1101, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31169059

RESUMEN

BACKGROUND: In multiple sclerosis (MS), disease effects on magnetisation transfer ratio (MTR) increase towards the ventricles. This periventricular gradient is evident shortly after first symptoms and is independent of white matter lesions. OBJECTIVE: To explore if alemtuzumab, a peripherally acting disease-modifying treatment, modifies the gradient's evolution, and whether baseline gradients predict on-treatment relapses. METHODS: Thirty-four people with relapsing-remitting MS underwent annual magnetic resonance imaging (MRI) scanning (19 receiving alemtuzumab (four scans each), 15 untreated (three scans each)). The normal-appearing white matter was segmented into concentric bands. Gradients were measured over the three bands nearest the ventricles. Mixed-effects models adjusted for age, gender, relapse rate, lesion number and brain parenchymal fraction compared the groups' baseline gradients and evolution. RESULTS: Untreated, the mean MTR gradient increased (+0.030 pu/band/year) but decreased following alemtuzumab (-0.045 pu/band/year, p = 0.037). Within the alemtuzumab group, there were no significant differences in baseline lesion number (p = 0.568) nor brain parenchymal fraction (p = 0.187) between those who relapsed within 4 years (n = 4) and those who did not (n = 15). However, the baseline gradient was significantly different (p = 0.020). CONCLUSION: Untreated, abnormal periventricular gradients worsen with time, but appear reversible with peripheral immunotherapy. Baseline gradients - but not lesion loads or brain volumes - may predict on-treatment relapses. Larger confirmatory studies are required.


Asunto(s)
Alemtuzumab , Esclerosis Múltiple Recurrente-Remitente , Sustancia Blanca , Alemtuzumab/uso terapéutico , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Sustancia Blanca/diagnóstico por imagen
9.
Spinal Cord ; 57(9): 717-728, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267015

RESUMEN

Traumatic spinal cord injury (SCI) leads to immediate neuronal and axonal damage at the focal injury site and triggers secondary pathologic series of events resulting in sensorimotor and autonomic dysfunction below the level of injury. Although there is no cure for SCI, neuroprotective and regenerative therapies show promising results at the preclinical stage. There is a pressing need to develop non-invasive outcome measures that can indicate whether a candidate therapeutic agent or a cocktail of therapeutic agents are positively altering the underlying disease processes. Recent conventional MRI studies have quantified spinal cord lesion characteristics and elucidated their relationship between severity of injury to clinical impairment and recovery. Next to the quantification of the primary cord damage, quantitative MRI measures of spinal cord (rostrocaudally to the lesion site) and brain integrity have demonstrated progressive and specific neurodegeneration of afferent and efferent neuronal pathways. MRI could therefore play a key role to ultimately uncover the relationship between clinical impairment/recovery and injury-induced neurodegenerative changes in the spinal cord and brain. Moreover, neuroimaging biomarkers hold promises to improve clinical trial design and efficiency through better patient stratification. The purpose of this narrative review is therefore to propose a guideline of clinically available MRI sequences and their derived neuroimaging biomarkers that have the potential to assess tissue damage at the macro- and microstructural level after SCI. In this piece, we make a recommendation for the use of key MRI sequences-both conventional and advanced-for clinical work-up and clinical trials.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ensayos Clínicos como Asunto/normas , Imagen por Resonancia Magnética/normas , Guías de Práctica Clínica como Asunto/normas , Traumatismos de la Médula Espinal/diagnóstico por imagen , Ensayos Clínicos como Asunto/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas , Traumatismos de la Médula Espinal/epidemiología
10.
Mult Scler ; 24(7): 932-941, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28516804

RESUMEN

OBJECTIVES: To measure the development of spinal cord (SC) atrophy over 1 year in patients with progressive multiple sclerosis (PMS) and determine the sample sizes required to demonstrate a reduction in spinal cord cross-sectional area (SC-CSA) as an outcome measure in clinical trials. METHODS: In total, 44 PMS patients (26 primary progressive multiple sclerosis (PPMS), 18 secondary progressive multiple sclerosis (SPMS)) and 29 healthy controls (HCs) were studied at baseline and 12 months. SC-CSA was measured using the three-dimensional (3D) fast field echo sequences acquired at 3T and the active surface model. Multiple linear regressions were used to investigate changes in imaging measurements. RESULTS: PPMS patients had shorter disease duration, lower Expanded Disability Status Scale (EDSS) and larger SC-CSA than SPMS patients. All patients together showed a significantly greater decrease in percentage SC-CSA change than HCs, which was driven by the PPMS. All patients deteriorated over 1 year, but no association was found between percentage SC-CSA change and clinical changes. The sample size per arm required to detect a 50% treatment effect over 1 year, at 80% power, was 57 for PPMS and 546 for SPMS. CONCLUSION: SC-CSA may become an outcome measure in trials of PPMS patients, when they are at an early stage of the disease, have moderate disability and modest SC atrophy.


Asunto(s)
Ensayos Clínicos Fase II como Asunto , Esclerosis Múltiple/patología , Evaluación de Resultado en la Atención de Salud , Médula Espinal/patología , Adulto , Atrofia/diagnóstico por imagen , Atrofia/patología , Encéfalo/patología , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Proyectos de Investigación , Estudios Retrospectivos , Médula Espinal/diagnóstico por imagen
11.
Mult Scler ; 22(2): 150-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26014608

RESUMEN

BACKGROUND: In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. OBJECTIVE: To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. METHODS: Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. RESULTS: Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. CONCLUSION: Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability.


Asunto(s)
Corteza Cerebral/patología , Sustancia Gris/patología , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/patología , Adulto , Anisotropía , Estudios de Casos y Controles , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Recurrencia
12.
J Neurol Neurosurg Psychiatry ; 85(5): 544-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24039024

RESUMEN

BACKGROUND: Grey matter (GM) pathology in multiple sclerosis (MS) is associated with progressive long-term disability. Detection of GM abnormalities in early MS may therefore be valuable in understanding and predicting the long-term course. However, structural MRI measures such as volume loss have shown only modest abnormalities in early relapsing-remitting MS (RRMS). We therefore investigated for evidence of abnormality in GM perfusion, consistent with metabolic dysfunction, in early RRMS. METHODS: 25 RRMS patients with ≤5 years disease duration and 25 age-matched healthy controls underwent 3 Tesla MRI with a pseudo-continuous arterial spin labelling sequence to quantify GM perfusion and a volumetric T1-weighted sequence to measure GM volume. Neurological status was assessed in patients and neuropsychological evaluation undertaken in all subjects. Voxel-based analysis was used to compare regional GM perfusion and volume measures in patients and controls. RESULTS: There was reduced global GM perfusion in patients versus controls (50.6±5.8 mL/100 g/min vs 54.4±7.6 mL/100 g/min, p=0.04). Voxel-based analysis revealed extensive regions of decreased cortical and deep GM perfusion in MS subjects. Reduced perfusion was associated with impaired memory scores. There was no reduction in global or regional analysis of GM volume in patients versus controls. CONCLUSIONS: The decrease in GM perfusion in the absence of volume loss is consistent with neuronal metabolic dysfunction in early RRMS. Future studies in larger cohorts and longitudinal follow-up are needed to investigate the functional and prognostic significance of the early GM perfusion deficits observed.


Asunto(s)
Encéfalo/patología , Circulación Cerebrovascular/fisiología , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Estudios de Casos y Controles , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/psicología , Pruebas Neuropsicológicas , Tamaño de los Órganos
13.
Mult Scler ; 20(10): 1322-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24552746

RESUMEN

BACKGROUND: Pathological abnormalities including demyelination and neuronal loss are reported in the outer cortex in multiple sclerosis (MS). OBJECTIVE: We investigated for in vivo evidence of outer cortical abnormalities by measuring the magnetisation transfer ratio (MTR) in MS patients of different subgroups. METHODS: Forty-four relapsing-remitting (RR) (mean age 41.9 years, median Expanded Disability Status Scale (EDSS) 2.0), 25 secondary progressive (SP) (54.1 years, EDSS 6.5) and 19 primary progressive (PP) (53.1 years, EDSS 6.0) MS patients and 35 healthy control subjects (mean age 39.2 years) were studied. Three-dimensional (3D) 1×1×1mm(3) T1-weighted images and MTR data were acquired. The cortex was segmented, then subdivided into outer and inner bands, and MTR values were calculated for each band. RESULTS: In a pairwise analysis, mean outer cortical MTR was lower than mean inner cortical MTR in all MS groups and controls (p<0.001). Compared with controls, outer cortical MTR was decreased in SPMS (p<0.001) and RRMS (p<0.01), but not PPMS. Outer cortical MTR was lower in SPMS than PPMS (p<0.01) and RRMS (p<0.01). CONCLUSIONS: Lower outer than inner cortical MTR in healthy controls may reflect differences in myelin content. The lowest outer cortical MTR was seen in SPMS and is consistent with more extensive outer cortical (including subpial) pathology, such as demyelination and neuronal loss, as observed in post-mortem studies of SPMS patients.


Asunto(s)
Corteza Cerebral/patología , Sustancia Gris/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Neuronas/patología , Adulto , Anciano , Estudios de Casos y Controles , Corteza Cerebral/metabolismo , Evaluación de la Discapacidad , Progresión de la Enfermedad , Femenino , Sustancia Gris/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/patología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Adulto Joven
14.
Mult Scler ; 20(13): 1692-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24787429

RESUMEN

BACKGROUND: Iron accumulation in deep grey matter (GM) structures is a consistent finding in multiple sclerosis (MS) patients. This study focused on the identification of independent determinants of iron accumulation using R2* mapping. SUBJECTS AND METHODS: Ninety-seven MS patients and 81 healthy controls were included in this multicentre study. R2* mapping was performed on 3T MRI systems. R2*in deep GM was corrected for age and was related to disease duration, disability, T2 lesion load and brain volume. RESULTS: Compared to controls, R2* was increased in all deep GM regions of MS patients except the globus pallidus and the substantia nigra. R2* increase was most pronounced in the progressive stage of the disease and independently predicted by disease duration and disability. Reduced cortical volume was not associated with iron accumulation in the deep GM with the exception of the substantia nigra and the red nucleus. In lesions, R2* was inversely correlated with disease duration and higher total lesion load. CONCLUSION: Iron accumulation in deep GM of MS patients is most strongly and independently associated with duration and severity of the disease. Additional associations between cortical GM atrophy and deep GM iron accumulation appear to exist in a region specific manner.


Asunto(s)
Encéfalo/metabolismo , Sustancia Gris/metabolismo , Hierro/análisis , Esclerosis Múltiple/metabolismo , Adulto , Encéfalo/patología , Femenino , Sustancia Gris/patología , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Adulto Joven
15.
NMR Biomed ; 26(3): 357-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281170

RESUMEN

The possibility of quantifying the superimposed signal of glutamate and glutamine (Glx) and its components by ¹H magnetic resonance spectroscopy (MRS) in the spinal cord is an exciting challenge with important clinical applications in neurological conditions. The spinal cord is a particularly difficult region of interest due to its small volume, magnetic field inhomogeneities and physiological motion. In this study, we investigated for the first time the feasibility of obtaining quantitative measurements of Glx in healthy cervical spinal cord by ¹H MRS at 3 T. The aim of this study was to compare two commercially available MRS sequences by spectral simulations and in vivo. A short echo time (TE) point resolved spectroscopy (PRESS) with TE = 30 ms and a stimulated echo acquisition mode (STEAM) with TE = 11 ms and mixing time (TM) = 17 ms were compared for reliability of Glx fit. Data allowed us to determine sample size estimates for future clinical studies for the first time. Results showed that PRESS provided a reliable fit for Glx in all cases (Cramér Rao lower bounds < 20%) whereas no reliable Glx fits were achieved using STEAM. Neither protocol provided reliable Glu quantification. The power calculations showed that a minimum sample size of 17 subjects per group was needed to detect Glx changes of > 20% using the PRESS sequence. This study proposed a clinically feasible MRS method for Glx detection in the human cervical cord in vivo including sample sizes needed for conclusive clinical studies.


Asunto(s)
Algoritmos , Vértebras Cervicales/metabolismo , Ácido Glutámico/análisis , Glutamina/análisis , Espectroscopía de Resonancia Magnética/métodos , Neurotransmisores/análisis , Médula Espinal/metabolismo , Adulto , Femenino , Humanos , Masculino , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA