Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Environ Health ; 74(10): 8-13, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22708201

RESUMEN

On November 23, 2006, former Russian military intelligence officer Alexander Litvinenko died in a London hospital. Authorities determined he was deliberately poisoned with the radionuclide Polonium-210 (210Po). Police subsequently discovered that those involved in this crime had--apparently inadvertently--spread 210Po over many locations in London. The United Kingdom Health Protection Agency (HPA) contacted many persons who might have been exposed to 210Po and provided voluntary urine testing. Some of those identified as potentially exposed were U.S. citizens, whom the HPA requested that the Centers for Disease Control and Prevention (CDC) assist in contacting. CDC also provided health care professionals and state and local public health officials with guidance as to how they might respond should a Litvinenko-like incident occur in the U.S. This guidance has resulted in the identification of a number of lessons that can be useful to public health and medical authorities in planning for radiological incidents. Eight such lessons are discussed in this article.


Asunto(s)
Planificación en Desastres/métodos , Homicidio , Polonio/envenenamiento , Liberación de Radiactividad Peligrosa , Radioisótopos/envenenamiento , Terrorismo , Monitoreo del Ambiente , Historia del Siglo XXI , Homicidio/historia , Humanos , Difusión de la Información , Cooperación Internacional , Polonio/análisis , Polonio/historia , Liberación de Radiactividad Peligrosa/historia , Radioisótopos/análisis , Radioisótopos/historia , Federación de Rusia , Terrorismo/historia , Reino Unido , Estados Unidos
2.
Environ Adv ; 92022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36159211

RESUMEN

In 2016 the United States Centers for Disease Control and Prevention (CDC) established a Nuclear/Radiological Training and Exercise Preparedness (TEP) Program to better prepare its workforce to respond to a nuclear/radiological incident. The TEP program is comprised of staff across CDC programs with a variety of specialties such as epidemiologists, clinicians, data managers, communicators, environmental health specialists, at risk population specialists and health physicists. Key TEP activities include the preparation of the CDC Nuclear/Radiological Incident Response and Recovery Annex that describes CDC's roles and responsibilities in the event of a nuclear/radiological incident; establishment of an Incident Management System (IMS) structure to reflect an agency-wide response consistent with CDC's All Hazards Plan; and completion of nuclear/radiological public health preparedness and response training and exercises. In addition to training sessions on the various radiation topics, the TEP program includes seminars on the various roles and responsibilities of the task forces defined in IMS during a response. The TEP program includes a range of discussion-based (seminars, workshops, tabletop exercises) and operations-based (drills and functional exercises) activities aimed at enhancing IMS staff capabilities and capacity to be prepared to respond to a nuclear/radiological incident. In summary, the CDC's Nuclear/Radiological TEP Program prepares knowledgeable, well-trained staff, or a radiation-savvy workforce, ready for a robust response to a nuclear/radiological emergency.

3.
Can J Microbiol ; 55(12): 1347-54, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20029526

RESUMEN

An environmental survey of tabanid host spiroplasma carriage was undertaken at 10 collection sites in Australia during February 1999. A total of 164 tabanid flies, representing 27 species, were collected and sustainable spiroplasma isolations were made from 48 of the flies. The morphology of the cultured spiroplasmas, as observed in M1D medium under dark-field microscopy, was typical of either (i) Apis group spiroplasmas (relatively thick cells (approximately 150 nm) with six or more turns) or (ii) chrysopicola-syrphidicola-TAAS-1 clade spiroplasmas (narrower, often much shorter cells) serologically related to Spiroplasma serogroup VIII. Repetitive serological analyses, involving successive rounds of dilution cloning and serological reevaluation, identified one serotype referable to the Spiroplasma serogroup VIII strain complex and five putative members of the Apis clade. Apis clade placement for these five groups was verified using 16S rRNA phylogenetic analyses. Among the Apis clade members, one serotype representing 11 isolates was identified as a geographic variant of Spiroplasma turonicum. Spiroplasma turonicum (Tab4C) was originally isolated from a tabanid Haematopoda sp. in France. The other 34 isolates represented four new serogroups (= putative species). The following strains are proposed as representatives of the new serogroups: strain GSU5478 (group XXXIX), strain GSU5490 (group XL), strain GSU5508 (group XLI), and strain GSU5603 (group XLII). In summary, six serogroups were observed from isolations originating from seven distinct sample sites in Australia. Surprisingly, the serotype with the greatest geographical range (five sites from 16 degrees 48.9'S to 35 degrees 40.0'S) and the greatest host diversity (nine species over three genera) was the geographic variant of S. turonicum, which had only been reported previously in France.


Asunto(s)
Dípteros/microbiología , Spiroplasma/clasificación , Animales , Australia , Biodiversidad , Ecología , Serotipificación , Spiroplasma/aislamiento & purificación
4.
Braz J Microbiol ; 40(3): 663-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24031412

RESUMEN

Surface serology is an important determinant in Spiroplasma systematics. Reciprocal antigen/antibody reactions between spiroplasmas and individual antisera delineate the 38 described groups and species. However, reciprocal serology is impractical for large-scale studies. This report describes a successful, streamlined polyvalent screening approach used to examine isolates from an environmental survey.

5.
Radiat Prot Dosimetry ; 182(1): 9-13, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165684

RESUMEN

In 2015-16, the US Department of Health and Human Services led 23 US Government (USG) agencies including the Centers for Disease Control and Prevention (CDC), and more than 120 subject matter experts in conducting an in-depth review of the US core public health capacities and evaluation of the country's compliance with the International Health Regulations using the Joint External Evaluation (JEE) methodology. This two-part process began with a detailed 'self-assessment' followed by a comprehensive independent, external evaluation conducted by 15 foreign assessors. In the Radiation Emergencies Technical Area, on a scale from 1-lowest to 5-highest, the assessors concurred with the USG self-assessed score of 3 in both of the relevant indicators. The report identified five priority actions recommended to improve the USG capacity to handle large-scale radiation emergencies. CDC is working to implement a post-JEE roadmap to address these priority actions in partnership with national and international partners.


Asunto(s)
Centers for Disease Control and Prevention, U.S. , Planificación en Desastres , Evaluación de Procesos, Atención de Salud/normas , Vigilancia en Salud Pública/métodos , Exposición a la Radiación/efectos adversos , Liberación de Radiactividad Peligrosa/prevención & control , Salud Radiológica/normas , Humanos , Evaluación de Procesos, Atención de Salud/métodos , Estados Unidos
6.
Health Phys ; 93(5 Suppl): S187-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18049249

RESUMEN

Medical health physicists working in a clinical setting will have a number of key roles in the event of a nuclear or radiological emergency, such as a terrorist attack involving a radiological dispersal device or an improvised nuclear device. Their first responsibility, of course, is to assist hospital administrators and facility managers in developing radiological emergency response plans for their facilities and train staff prior to an emergency. During a hospital's response to a nuclear or radiological emergency, medical health physicists may be asked to (1) evaluate the level of radiological contamination in or on incoming victims; (2) help the medical staff evaluate and understand the significance to patient and staff of the levels of radioactivity with which they are dealing; (3) orient responding medical staff with principles of dealing with radioactive contaminants; (4) provide guidance to staff on decontamination of patients, facilities, and the vehicles in which patients were transported; and (5) assist local public health authorities in monitoring people who are not injured but who have been or are concerned that they may have been exposed to radioactive materials or radiation as a result of the incident. Medical health physicists may also be called upon to communicate with staff, patients, and the media on radiological issues related to the event. Materials are available from a number of sources to assist in these efforts. The Centers for Disease Control and Prevention (CDC) is developing guidance in the areas of radiological population monitoring, handling contaminated fatalities, and using hospital equipment for emergency monitoring. CDC is also developing training and information materials that may be useful to medical health physicists who are called upon to assist in developing facility response plans or respond to a nuclear or radiological incident. Comments on these materials are encouraged.


Asunto(s)
Planificación en Desastres/organización & administración , Servicios Médicos de Urgencia/organización & administración , Física Sanitaria/organización & administración , Rol Profesional , Protección Radiológica/métodos , Liberación de Radiactividad Peligrosa/prevención & control , Estados Unidos
7.
Health Phys ; 108(3): 357-63, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25627948

RESUMEN

On 11 March 2011, northern Japan was struck by first a magnitude 9.0 earthquake off the eastern coast and then by an ensuing tsunami. At the Fukushima Dai-ichi Nuclear Power Plant (NPP), these twin disasters initiated a cascade of events that led to radionuclide releases. Radioactive material from Japan was subsequently transported to locations around the globe, including the U.S. The levels of radioactive material that arrived in the U.S. were never large enough to cause health effects, but the presence of this material in the environment was enough to require a response from the public health community. Events during the response illustrated some U.S. preparedness challenges that previously had been anticipated and others that were newly identified. Some of these challenges include the following: (1) Capacity, including radiation health experts, for monitoring potentially exposed people for radioactive contamination are limited and may not be adequate at the time of a large-scale radiological incident; (2) there is no public health authority to detain people contaminated with radioactive materials; (3) public health and medical capacities for response to radiation emergencies are limited; (4) public health communications regarding radiation emergencies can be improved to enhance public health response; (5) national and international exposure standards for radiation measurements (and units) and protective action guides lack uniformity; (6) access to radiation emergency monitoring data can be limited; and (7) the Strategic National Stockpile may not be currently prepared to meet the public health need for KI in the case of a surge in demand from a large-scale radiation emergency. Members of the public health community can draw on this experience to improve public health preparedness.


Asunto(s)
Accidente Nuclear de Fukushima , Salud Pública , Comunicación , Atención a la Salud , Urgencias Médicas , Exposición a Riesgos Ambientales/normas , Fuerza Laboral en Salud , Humanos , Difusión de la Información , Yoduro de Potasio/provisión & distribución , Estados Unidos
8.
Health Phys ; 108(2): 149-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25551496

RESUMEN

Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience, and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal, and territorial governments; private sector organizations; academia; industry; international partners; and individual experts and volunteers. The approach developed by the U.S. Department of Health and Human Services Nuclear Incident Medical Enterprise (NIME) is the result of efforts from government and nongovernment experts. It is a "bottom-up" systematic approach built on the available and emerging science that considers physical infrastructure damage, the spectrum of injuries, a scarce resources setting, the need for decision making in the face of a rapidly evolving situation with limited information early on, timely communication, and the need for tools and just-in-time information for responders who will likely be unfamiliar with radiation medicine and uncertain and overwhelmed in the face of the large number of casualties and the presence of radioactivity. The components of NIME can be used to support planning for, response to, and recovery from the effects of a nuclear incident. Recognizing that it is a continuous work-in-progress, the current status of the public health and medical preparedness and response for a nuclear incident is provided.


Asunto(s)
Planificación en Desastres/métodos , Guerra Nuclear , Comunicación , Gobierno Federal , Agencias Gubernamentales , Humanos , Comunicación Interdisciplinaria , Incidentes con Víctimas en Masa , Radiación , Traumatismos por Radiación , Liberación de Radiactividad Peligrosa , Radiobiología , Radiometría , Riesgo , Estados Unidos , United States Department of Homeland Security
9.
Health Phys ; 82(3): 304-15, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11845833

RESUMEN

Estimates of 137Cs deposition caused by fallout originating from nuclear weapons testing in the Marshall Islands have been estimated for several locations in the Marshall Islands. These retrospective estimates are based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site. Reconstructed cumulative deposition estimates are validated against contemporary measurements of 137Cs concentration in soil with account taken for estimated global fallout contributions. These validations show that the overall geometric bias in predicted-to-observed (P:O) ratios is 1.0 (indicating excellent agreement). The 5th to 95th percentile range of this distribution is 0.35-2.95. The P:O ratios for estimates using historical gummed film measurements tend to slightly overpredict more than estimates using exposure rate measurements. The deposition estimate methods, supported by the agreement between estimates and measurements, suggest that these methods can be used with confidence for other weapons testing fallout radionuclides.


Asunto(s)
Radioisótopos de Cesio/análisis , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Suelo , Micronesia , Modelos Teóricos , Guerra Nuclear , Monitoreo de Radiación , Factores de Tiempo , Tiempo (Meteorología)
10.
Biosecur Bioterror ; 12(1): 42-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552361

RESUMEN

During routine screening in 2011, US Customs and Border Protection (CBP) identified 2 persons with elevated radioactivity. CBP, in collaboration with Los Alamos National Laboratory, informed the Food and Drug Administration (FDA) that these people could have increased radiation exposure as a result of undergoing cardiac Positron Emission Tomography (PET) scans several months earlier with rubidium Rb 82 chloride injection from CardioGen-82. We conducted a multistate investigation to assess the potential extent and magnitude of radioactive strontium overexposure among patients who had undergone Rb 82 PET scans. We selected a convenience sample of clinical sites in 4 states and reviewed records to identify eligible study participants, defined as people who had had an Rb 82 PET scan between February and July 2011. All participants received direct radiation screening using a radioisotope identifier able to detect the gamma energy specific for strontium-85 (514 keV) and urine bioassay for excreted radioactive strontium. We referred a subset of participants with direct radiation screening counts above background readings for whole body counting (WBC) using a rank ordering of direct radiation screening. The rank order list, from highest to lowest, was used to contact and offer voluntary enrollment for WBC. Of 308 participants, 292 (95%) had direct radiation screening results indistinguishable from background radiation measurements; 261 of 265 (98%) participants with sufficient urine for analysis had radioactive strontium results below minimum detectable activity. None of the 23 participants who underwent WBC demonstrated elevated strontium activity above levels associated with routine use of the rubidium Rb 82 generator. Among investigation participants, we did not identify evidence of strontium internal contamination above permissible levels. This investigation might serve as a model for future investigations of radioactive internal contamination incidents.


Asunto(s)
Tomografía de Emisión de Positrones , Radioisótopos de Rubidio , Estroncio/aislamiento & purificación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Corazón/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Radioisótopos de Rubidio/análisis , Tomografía Computarizada por Rayos X , Estados Unidos
11.
Health Phys ; 101(2): 209-15, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21709510

RESUMEN

Following a radiation emergency, evacuated, sheltered or other members of the public would require monitoring for external and/or internal contamination and, if indicated, decontamination. In addition, the potentially-impacted population would be identified for biodosimetry/bioassay or needed medical treatment (chelation therapy, cytokine treatment, etc.) and prioritized for follow-up. Expeditious implementation of these activities presents many challenges, especially when a large population is affected. Furthermore, experience from previous radiation incidents has demonstrated that the number of people seeking monitoring for radioactive contamination (both external and internal) could be much higher than the actual number of contaminated individuals. In the United States, the Department of Health and Human Services is the lead agency to coordinate federal support for population monitoring activities. Population monitoring includes (1) monitoring people for external contamination; (2) monitoring people for internal contamination; (3) population decontamination; (4) collecting epidemiologic data regarding potentially exposed and/or contaminated individuals to prioritize the affected population for limited medical resources; (5) administering available pharmaceuticals for internal decontamination as deemed necessary by appropriate health officials; (6) performing dose reconstruction; and (7) establishing a registry to conduct long-term monitoring of this population for potential long-term health effects. This paper will focus on screening for internal contamination and will describe the use of early epidemiologic data as well as direct bioassay techniques to rapidly identify and prioritize the affected population for further analysis and medical attention.


Asunto(s)
Descontaminación/métodos , Medicina de Emergencia/métodos , Estudios Epidemiológicos , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Humanos , Protección Radiológica/métodos , Radioisótopos/aislamiento & purificación , Estados Unidos/epidemiología
12.
Health Phys ; 96(5 Suppl 2): S50-4, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19359842

RESUMEN

A growing body of audience research reveals medical personnel in hospitals are unprepared for a large-scale radiological emergency such as a terrorist event involving radioactive or nuclear materials. Also, medical personnel in hospitals lack a basic understanding of radiation principles, as well as diagnostic and treatment guidelines for radiation exposure. Clinicians have indicated that they lack sufficient training on radiological emergency preparedness; they are potentially unwilling to treat patients if those patients are perceived to be radiologically contaminated; and they have major concerns about public panic and overloading of clinical systems. In response to these findings, the Centers for Disease Control and Prevention (CDC) has developed a tool kit for use by hospital medical personnel who may be called on to respond to unintentional or intentional mass-casualty radiological and nuclear events. This tool kit includes clinician fact sheets, a clinician pocket guide, a digital video disc (DVD) of just-in-time basic skills training, a CD-ROM training on mass-casualty management, and a satellite broadcast dealing with medical management of radiological events. CDC training information emphasizes the key role that medical health physicists can play in the education and support of emergency department activities following a radiological or nuclear mass-casualty event.


Asunto(s)
Defensa Civil/educación , Urgencias Médicas , Física Sanitaria/educación , Personal de Hospital/educación , Protección Radiológica , Centers for Disease Control and Prevention, U.S. , Humanos , Armas Nucleares , Terrorismo , Estados Unidos
13.
Int J Syst Evol Microbiol ; 57(Pt 11): 2703-2719, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17978244

RESUMEN

Minimal standards for novel species of the class Mollicutes (trivial term, mollicutes), last published in 1995, require revision. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Mollicutes proposes herein revised standards that reflect recent advances in molecular systematics and the species concept for prokaryotes. The mandatory requirements are: (i) deposition of the type strain into two recognized culture collections, preferably located in different countries; (ii) deposition of the 16S rRNA gene sequence into a public database, and a phylogenetic analysis of the relationships among the 16S rRNA gene sequences of the novel species and its neighbours; (iii) deposition of antiserum against the type strain into a recognized collection; (iv) demonstration, by using the combination of 16S rRNA gene sequence analyses, serological analyses and supplementary phenotypic data, that the type strain differs significantly from all previously named species; and (v) assignment to an order, a family and a genus in the class, with an appropriate specific epithet. The 16S rRNA gene sequence provides the primary basis for assignment to hierarchical rank, and may also constitute evidence of species novelty, but serological and supplementary phenotypic data must be presented to substantiate this. Serological methods have been documented to be congruent with DNA-DNA hybridization data and with 16S rRNA gene placements. The novel species must be tested serologically to the greatest extent that the investigators deem feasible against all neighbouring species whose 16S rRNA gene sequences show >0.94 similarity. The investigator is responsible for justifying which characters are most meaningful for assignment to the part of the mollicute phylogenetic tree in which a novel species is located, and for providing the means by which novel species can be identified by other investigators. The publication of the description should appear in a journal having wide circulation. If the journal is not the International Journal of Systematic and Evolutionary Microbiology, copies of the publication must be submitted to that journal so that the name may be considered for inclusion in a Validation List as required by the International Code of Bacteriological Nomenclature (the Bacteriological Code). Updated informal descriptions of the class Mollicutes and some of its constituent higher taxa are available as supplementary material in IJSEM Online.


Asunto(s)
Técnicas de Tipificación Bacteriana/normas , Tenericutes/clasificación , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/análisis , ADN Ribosómico/análisis , Genotipo , Hibridación de Ácido Nucleico/métodos , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Estándares de Referencia , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Serología/métodos , Serología/normas , Especificidad de la Especie , Tenericutes/genética , Tenericutes/fisiología , Terminología como Asunto
16.
Braz. j. microbiol ; 40(3): 663-669, Sept. 2009.
Artículo en Inglés | LILACS | ID: lil-522486

RESUMEN

Surface serology is an important determinant in Spiroplasma systematics. Reciprocal antigen/antibody reactions between spiroplasmas and individual antisera delineate the 38 described groups and species. However, reciprocal serology is impractical for largescale studies. This report describes a successful, streamlined polyvalent screening approach used to examine isolates from an environmental survey.


A sorologia de superfície é um determinante importante na sistemática de Spiroplasma. Reações antígeno-anticorpo entre spiroplasmas e antisoro individuais delineiam os 38 grupos e espécies descritos. No entanto, reações sorológicas são impraticáveis em estudos em larga-escala. Esse relato descreve uma metodologia de triagem bem sucedida a ser empregada no exame de isolados em levantamentos ambientais.

17.
Int J Syst Evol Microbiol ; 54(Pt 3): 893-918, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15143041

RESUMEN

The genus Spiroplasma (helical mollicutes: Bacteria: Firmicutes: Mollicutes: Entomoplasmatales: Spiroplasmataceae) is associated primarily with insects. The Mycoplasma mycoides cluster (sensu Weisburg et al. 1989 and Johansson and Pettersson 2002) is a group of mollicutes that includes the type species - Mycoplasma mycoides - of Mycoplasmatales, Mycoplasmataceae and Mycoplasma. This cluster, associated solely with ruminants, contains five other species and subspecies. Earlier phylogenetic reconstructions based on partial 16S rDNA sequences and a limited sample of Spiroplasma and Mycoplasma sequences suggested that the genus Mycoplasma was polyphyletic, as the M. mycoides cluster and the grouping that consisted of the hominis and pneumoniae groups of Mycoplasma species were widely separated phylogenetically and the M. mycoides cluster was allied with Spiroplasma. It is shown here that the M. mycoides cluster arose from Spiroplasma through an intermediate group of non-helical spiroplasmal descendants - the Entomoplasmataceae. As this conclusion has profound implications in the taxonomy of Mollicutes, a detailed phylogenetic study of Spiroplasma and its non-helical descendants was undertaken. These analyses, done with maximum-parsimony, provide cladistic status; a new nomenclature is introduced here, based on 'bottom-up' rather than 'top-down' clade classification. The order Entomoplasmatales consists of four major clades: (i) the Mycoides-Entomoplasmataceae clade, which contains M. mycoides and its allies and Entomoplasma and Mesoplasma species and is a sister lineage to (ii) the Apis clade of Spiroplasma. Spiroplasma and the Entomoplasmataceae are paraphyletic, but this status does not diminish their phylogenetic usefulness. Five species that were previously unclassified phylogenetically are basal to the Apis clade sensu strictu and to the Mycoides clade. One of these species, Spiroplasma sp. TIUS-1, has very poor helicity and a very small genome (840 kbp); this putative species can be envisioned as a 'missing link' in the evolution of the Mycoides-Entomoplasmataceae clade. The other two Spiroplasma clades are: (iii) the Citri-Chrysopicola-Mirum clade (serogroups I, II, V and VIII) and (iv) the ixodetis clade (serogroup VI). As Mesoplasma lactucae represents a basal divergence within the Mycoides-Entomoplasmataceae clade, and as Entomoplasma freundtii is basal to the Mycoides clade, M. mycoides and its allies must have arisen from an ancestor in the Entomoplasmataceae. The paraphyletic grouping that consists of the Hominis and Pneumoniae groups (sensu Johansson & Pettersson 2002) of Mycoplasma species contains the ancestral roots of Ureaplasma spp. and haemoplasmas. This clade is a sister lineage to the Entomoplasmatales clade. Serological classifications of spiroplasma are very highly supported by the trees presented. Genome size and G+C content of micro-organismal DNA were moderately conserved, but there have been frequent and polyphyletically distributed genome reductions. Sterol requirements were polyphyletic, as was the ability to grow in the presence of polyoxyethylene sorbitan-supplemented, but not serum-supplemented, media. As this character is not phylogenetically distributed, Mesoplasma and Entomoplasma should be combined into a single genus. The phylogenetic trees presented here confirm previous reports of polyphyly of the genus Mycoplasma. As both clades of Mycoplasma contain several species of great practical importance, a change of the genus name for species in either clade would have immense practical implications. In addition, a change of the genus name for M. mycoides would have to be approved by the Judicial Commission. For these reasons, the Linnaean and phylogenetic classifications of Mycoplasma must for now be discrepant.


Asunto(s)
Mycoplasma mycoides/clasificación , Spiroplasma/clasificación , Composición de Base , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/genética , Evolución Molecular , Genoma Bacteriano , Datos de Secuencia Molecular , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Fenotipo , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Serotipificación , Spiroplasma/genética , Spiroplasma/metabolismo , Terminología como Asunto
18.
Can J Microbiol ; 50(12): 1061-7, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15714237

RESUMEN

Spiroplasma species (Mollicutes: Spiroplasmataceae) are associated with a wide variety of insects, and serology has classified this genus into 34 groups, 3 with subgroups. The 16S rRNA gene has been used for phylogenetic analysis of spiroplasmas, but this approach is uninformative for group VIII because the serologically distinct subgroups generally have similarity coefficients >0.990. Therefore, we investigated the utility of the 16S-23S rRNA spacer region as a means to differentiate closely related subgroups or strains. We generated intergenic sequences and detailed serological profiles for 8 group VIII Spiroplasma strains. Sequence analyses using Maximum Parsimony, Neighbor Joining, and Maximum Likelihood placed the strains into 2 clades. One clade consisted of strains BARC 2649 and GSU5367. The other clade was divided into clusters containing representatives of the 3 designated group VIII subgroups (EA-1, DF-1, and TAAS-1) and 3 previously unclassified strains. The stability of the positions of the strains in various analytical models and the ability to provide robust support for groupings tentatively supported by serology indicates that the 16S-23S intergenic rDNA sequence will prove useful in intragroup analysis of group VIII spiroplasmas.


Asunto(s)
ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Spiroplasma/clasificación , Spiroplasma/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Serotipificación , Spiroplasma/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA