Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(5): e2300223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522027

RESUMEN

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.


Asunto(s)
Envejecimiento , Matriz Extracelular , Animales , Humanos , Matriz Extracelular/metabolismo , Reino Unido
2.
Chem Soc Rev ; 52(20): 6892-6917, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37753825

RESUMEN

This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.

3.
Diabet Med ; 40(12): e15192, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37531444

RESUMEN

AIMS: Our aim was to determine if ultrasound-guided HPV injection in mice would provide reproducible and reliable results, as is currently obtained via open laparotomy techniques, and offer a surgical refinement to emulate islet transplantation in humans. METHODS: Fluorescent-polymer microparticles (20 µm) were injected (27G-needle) into the HPV via open laparotomy (n = 4) or under ultrasound-guidance (n = 4) using an MX550D-transducer with a Vevo3100-scanner (FUJIFILM VisualSonics, Inc.). Mice were culled 24-h post injection; organs were frozen, step sectioned (10 µm-slices) and 10 sections/mouse (50 µm-spacing) were quantified for microparticles in the liver and other organs by fluorescent microscopy. RESULTS: Murine HPV injection, via open laparotomy-route, resulted in widespread distribution of microparticles in the liver, lungs and spleen; ultrasound-guided injection resulted in reduced microparticle delivery (p < 0.0001) and microparticle clustering in distinct areas of the liver at the site of needle penetration, with very few/no microparticles being seen in lung and spleen tissues, hypothesised to be due to flow into the body cavity: liver median (interquartile range) 4.15 (0.00-4.15) versus 0.00 (0.00-0.00) particle-count mm-2 , respectively. CONCLUSIONS: Ultrasound-guided injection results in microparticle clustering in the liver, with an overall reduction in microparticle number when compared to open laparotomy HPV injection, and high variability in microparticle-counts detected between mice. Ultrasound-guided injection is not currently a technique that can replace open laparotomy HPV of islet transplantation in mice.


Asunto(s)
Infecciones por Papillomavirus , Vena Porta , Humanos , Ratones , Animales , Vena Porta/diagnóstico por imagen , Hígado , Ultrasonografía , Ultrasonografía Intervencional
4.
PLoS Comput Biol ; 17(9): e1009436, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543264

RESUMEN

Accurate knowledge of prior population exposure has critical ramifications for preparedness plans for future SARS-CoV-2 epidemic waves and vaccine prioritization strategies. Serological studies can be used to estimate levels of past exposure and thus position populations in their epidemic timeline. To circumvent biases introduced by the decay in antibody titers over time, methods for estimating population exposure should account for seroreversion, to reflect that changes in seroprevalence measures over time are the net effect of increases due to recent transmission and decreases due to antibody waning. Here, we present a new method that combines multiple datasets (serology, mortality, and virus positivity ratios) to estimate seroreversion time and infection fatality ratios (IFR) and simultaneously infer population exposure levels. The results indicate that the average time to seroreversion is around six months, IFR is 0.54% to 1.3%, and true exposure may be more than double the current seroprevalence levels reported for several regions of England.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Estudios Seroepidemiológicos , COVID-19/epidemiología , Inglaterra/epidemiología , Humanos , Pandemias
5.
Org Biomol Chem ; 20(38): 7587-7592, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107007

RESUMEN

We present a series of supramolecular self-associated amphiphiles, which spontaneously self-assemble into aggregated species. These aggregates are shown to absorb a variety of (polar) micropollutants from aqueous mixtures and as a result we determine the suitability for this technology to be developed further as aqueous environmental clean-up agents.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Agua
6.
Org Biomol Chem ; 20(30): 5999-6006, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35147630

RESUMEN

Supramolecular self-associating amphiphiles are a class of amphiphilic salt, the anionic component of which is 'frustrated' in nature, meaning multiple hydrogen bonding modes can be accessed simultaneously. Here we derive critical micelle concentration values for four supramolecular self-associating amphiphiles using the standard pendant drop approach and present a new high-throughput, optical density measurement based methodology, to enable the estimation of critical micelle concentrations over multiple temperatures. In addition, we characterise the low-level hydrogen bonded self-association events in the solid state, through single crystal X-ray diffraction, and in polar organic DMSO-d6 solutions using a combination of 1H NMR techniques. Moving into aqueous ethanol solutions (EtOH/H2O or EtOH/D2O (1 : 19 v/v)), we also show these amphiphilic compounds to form higher-order self-associated species through a combination of 1H NMR, dynamic light scattering and zeta potential studies.


Asunto(s)
Micelas , Agua , Cristalografía por Rayos X , Hidrógeno , Enlace de Hidrógeno , Agua/química
7.
Malar J ; 20(1): 189, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33865392

RESUMEN

BACKGROUND: Many public health interventions lead to disruption or decrease of transmission, providing a beneficial effect for people in the population regardless of whether or not they individually participate in the intervention. This protective benefit has been referred to as a herd or community effect and is dependent on sufficient population participation. In practice, public health interventions are implemented at different spatial scales (i.e., at the village, district, or provincial level). Populations, however defined (i.e., neighbourhoods, villages, districts) are frequently connected to other populations through human movement or travel, and this connectedness can influence potential herd effects. METHODS: The impact of a public health intervention (mass drug administration for malaria) was modelled, for different levels of connectedness between populations that have similar disease epidemiology (e.g., two nearby villages which have similar baseline malaria incidences and similar malaria intervention measures), or between populations of varying disease epidemiology (e.g., two nearby villages which have different baseline malaria incidences and/or malaria intervention measures). RESULTS: The overall impact of the interventions deployed could be influenced either positively (adding value to the intervention) or negatively (reducing the impact of the intervention) by how much the intervention units are connected with each other (e.g., how frequent people go to the other village or town) and how different the disease intensity between them are. This phenomenon is termed the "assembly effect", and it is a meta-population version of the more commonly understood "herd effect". CONCLUSIONS: The connectedness of intervention units or populations is an important factor to be considered to achieve success in public health interventions that could provide herd effects. Appreciating the assembly effect can improve the cost-effective strategies for global disease elimination projects.


Asunto(s)
Erradicación de la Enfermedad/estadística & datos numéricos , Malaria/prevención & control , Administración Masiva de Medicamentos/estadística & datos numéricos , Población Rural/estadística & datos numéricos , Viaje/estadística & datos numéricos , Humanos
8.
Malar J ; 20(1): 344, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399767

RESUMEN

BACKGROUND: Malaria continues to be a public health problem in South Africa. While the disease is mainly confined to three of the nine provinces, most local transmissions occur because of importation of cases from neighbouring countries. The government of South Africa has reiterated its commitment to eliminate malaria within its borders. To support the achievement of this goal, this study presents a cost-benefit analysis of malaria elimination in South Africa through simulating different scenarios aimed at achieving malaria elimination within a 10-year period. METHODS: A dynamic mathematical transmission model was developed to estimate the costs and benefits of malaria elimination in South Africa between 2018 and 2030. The model simulated a range of malaria interventions and estimated their impact on the transmission of Plasmodium falciparum malaria between 2018 and 2030 in the three endemic provinces of Limpopo, Mpumalanga and KwaZulu-Natal. Local financial, economic, and epidemiological data were used to calibrate the transmission model. RESULTS: Based on the three primary simulated scenarios: Business as Usual, Accelerate and Source Reduction, the total economic burden was estimated as follows: for the Business as Usual scenario, the total economic burden of malaria in South Africa was R 3.69 billion (USD 223.3 million) over an 11-year period (2018-2029). The economic burden of malaria was estimated at R4.88 billion (USD 295.5 million) and R6.34 billion (~ USD 384 million) for the Accelerate and Source Reduction scenarios, respectively. Costs and benefits are presented in midyear 2020 values. Malaria elimination was predicted to occur in all three provinces if the Source Reduction strategy was adopted to help reduce malaria rates in southern Mozambique. This could be achieved by limiting annual local incidence in South Africa to less than 1 indigenous case with a prediction of this goal being achieved by the year 2026. CONCLUSIONS: Malaria elimination in South Africa is feasible and economically worthwhile with a guaranteed positive return on investment (ROI). Findings of this study show that through securing funding for the proposed malaria interventions in the endemic areas of South Africa and neighbouring Mozambique, national elimination could be within reach in an 8-year period.


Asunto(s)
Erradicación de la Enfermedad/economía , Malaria Falciparum/prevención & control , Humanos , Modelos Económicos , Sudáfrica
9.
Nature ; 528(7580): S94-101, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26633771

RESUMEN

Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using polymerase chain reaction if treatment levels are high and screening is conducted during the dry season. Along with other factors, such as coverage, choice of drug, timing of the intervention, importation of infections, and seasonality, the sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission.


Asunto(s)
Pruebas Diagnósticas de Rutina , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Reacción en Cadena de la Polimerasa , Prevalencia , Reproducibilidad de los Resultados , Adulto Joven
10.
Semin Immunol ; 29: 2-13, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28736160

RESUMEN

Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ+LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers.


Asunto(s)
Biomimética , Matriz Extracelular/metabolismo , Macrófagos/fisiología , Andamios del Tejido , Animales , Materiales Biocompatibles/metabolismo , Células de la Médula Ósea/fisiología , Diferenciación Celular , Matriz Extracelular/inmunología , Humanos , Mamíferos , Fenotipo , Cicatrización de Heridas
11.
BMC Public Health ; 21(1): 826, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926399

RESUMEN

BACKGROUND: Mass drug administration (MDA) has received growing interest to accelerate the elimination of multi-drug resistant malaria in the Greater Mekong Subregion. Targeted MDA, sometimes referred to as focal MDA, is the practice of delivering MDA to high incidence subpopulations only, rather than the entire population. The potential effectiveness of delivering targeted MDA was demonstrated in a recent intervention in Kayin State, Myanmar. Policymakers and funders need to know what resources are required if MDA, targeted or otherwise, is to be included in elimination packages beyond existing malaria interventions. This study aims to estimate the programmatic cost and the unit cost of targeted MDA in Kayin State, Myanmar. METHODS: We used financial data from a malaria elimination initiative, conducted in Kayin State, to estimate the programmatic costs of the targeted MDA component using a micro-costing approach. Three activities (community engagement, identification of villages for targeted MDA, and conducting mass treatment in target villages) were evaluated. We then estimated the programmatic costs of implementing targeted MDA to support P. falciparum malaria elimination in Kayin State. A costing tool was developed to aid future analyses. RESULTS: The cost of delivering targeted MDA within an integrated malaria elimination initiative in eastern Kayin State was approximately US$ 910,000. The cost per person reached, distributed among those in targeted and non-targeted villages, for the MDA component was US$ 2.5. CONCLUSION: This cost analysis can assist policymakers in determining the resources required to clear malaria parasite reservoirs. The analysis demonstrated the value of using financial data from research activities to predict programmatic implementation costs of targeting MDA to different numbers of target villages.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Administración Masiva de Medicamentos , Mianmar/epidemiología
12.
Clin Infect Dis ; 70(11): 2262-2269, 2020 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31313805

RESUMEN

BACKGROUND: In the absence of proper guidelines and algorithms, available rapid diagnostic tests (RDTs) for common acute undifferentiated febrile illnesses are often used inappropriately. METHODS: Using prevalence data of 5 common febrile illnesses from India and Cambodia, and performance characteristics (sensitivity and specificity) of relevant pathogen-specific RDTs, we used a mathematical model to predict the probability of correct identification of each disease when diagnostic testing occurs either simultaneously or sequentially in various algorithms. We developed a web-based application of the model so as to visualize and compare output diagnostic algorithms when different disease prevalence and test performance characteristics are introduced. RESULTS: Diagnostic algorithms with appropriate sequential testing predicted correct identification of etiology in 74% and 89% of patients in India and Cambodia, respectively, compared with 46% and 49% with simultaneous testing. The optimally performing sequential diagnostic algorithms differed in India and Cambodia due to varying disease prevalence. CONCLUSIONS: Simultaneous testing is not appropriate for the diagnosis of acute undifferentiated febrile illnesses with presently available tests, which should deter the unsupervised use of multiplex diagnostic tests. The implementation of adaptive algorithms can predict better diagnosis and add value to the available RDTs. The web application of the model can serve as a tool to identify the optimal diagnostic algorithm in different epidemiological settings, while taking into account the local epidemiological variables and accuracy of available tests.


Asunto(s)
Algoritmos , Pruebas Diagnósticas de Rutina , Cambodia/epidemiología , Humanos , India/epidemiología , Sensibilidad y Especificidad
13.
Molecules ; 25(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917007

RESUMEN

Herein, we present a series of supramolecular self-associating amphiphilic (SSA) salts and establish the potential for these molecular constructs to act as next-generation solution-state molecular delivery vehicles. We characterise the self-association of these SSAs, both alone and when co-formulated with a variety of drug(like) competitive guest species. Single crystal X-ray diffraction studies enable the observation of hydrogen-bonded self-association events in the solid state, whilst high resolution mass spectrometry confirms the presence of anionic SSA dimers in the gas-phase. These same anionic SSA dimeric species are also identified within a competitive organic solvent environment (DMSO-d6/0.5% H2O). However, extended self-associated aggregates are observed to form under aqueous conditions (H2O/5.0% EtOH) in both the absence and presence of these competitive guest species. Finally, through the completion of these studies, we present a framework to support others in the characterisation of such systems.


Asunto(s)
Química Orgánica/métodos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Tensoactivos/química , Aniones , Dimerización , Gases , Hidrodinámica , Hidrogeles/química , Enlace de Hidrógeno , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Tamaño de la Partícula , Polímeros/química , Solventes/química , Difracción de Rayos X
14.
PLoS Med ; 16(2): e1002745, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768615

RESUMEN

BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent. METHODS AND FINDINGS: After establishing vector control and community-based case management and following intensive community engagement, we used restricted randomisation within village pairs to select 8 villages to receive early DP MDA and 8 villages as controls for 12 months, after which the control villages received deferred DP MDA. The MDA comprised 3 monthly rounds of 3 daily doses of DP and, except in Cambodia, a single low dose of primaquine. We conducted exhaustive cross-sectional surveys of the entire population of each village at quarterly intervals using ultrasensitive quantitative PCR to detect Plasmodium infections. The study was conducted between May 2013 and July 2017. The investigators randomised 16 villages that had a total of 8,445 residents at the start of the study. Of these 8,445 residents, 4,135 (49%) residents living in 8 villages, plus an additional 288 newcomers to the villages, were randomised to receive early MDA; 3,790 out of the 4,423 (86%) participated in at least 1 MDA round, and 2,520 out of the 4,423 (57%) participated in all 3 rounds. The primary outcome, P. falciparum prevalence by month 3 (M3), fell by 92% (from 5.1% [171/3,340] to 0.4% [12/2,828]) in early MDA villages and by 29% (from 7.2% [246/3,405] to 5.1% [155/3,057]) in control villages. Over the following 9 months, the P. falciparum prevalence increased to 3.3% (96/2,881) in early MDA villages and to 6.1% (128/2,101) in control villages (adjusted incidence rate ratio 0.41 [95% CI 0.20 to 0.84]; p = 0.015). Individual protection was proportional to the number of completed MDA rounds. Of 221 participants with subclinical P. falciparum infections who participated in MDA and could be followed up, 207 (94%) cleared their infections, including 9 of 10 with artemisinin- and piperaquine-resistant infections. The DP MDAs were well tolerated; 6 severe adverse events were detected during the follow-up period, but none was attributable to the intervention. CONCLUSIONS: Added to community-based basic malaria control measures, 3 monthly rounds of DP MDA reduced the incidence and prevalence of falciparum malaria over a 1-year period in areas affected by artemisinin resistance. P. falciparum infections returned during the follow-up period as the remaining infections spread and malaria was reintroduced from surrounding areas. Limitations of this study include a relatively small sample of villages, heterogeneity between villages, and mobility of villagers that may have limited the impact of the intervention. These results suggest that, if used as part of a comprehensive, well-organised, and well-resourced elimination programme, DP MDA can be a useful additional tool to accelerate malaria elimination. TRIAL REGISTRATION: ClinicalTrials.gov NCT01872702.


Asunto(s)
Antimaláricos/administración & dosificación , Erradicación de la Enfermedad/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Administración Masiva de Medicamentos/métodos , Adolescente , Adulto , Asia Sudoriental/epidemiología , Niño , Análisis por Conglomerados , Estudios Cruzados , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Malaria Falciparum/diagnóstico , Masculino , Adulto Joven
15.
Malar J ; 18(1): 64, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30849980

RESUMEN

BACKGROUND: Malaria is heterogeneously distributed across landscapes. Human population movement (HPM) could link sub-regions with varying levels of transmission, leading to the persistence of disease even in very low transmission settings. Malaria along the Thai-Myanmar border has been decreasing, but remains heterogeneous. This study aimed to measure HPM, associated predictors of travel, and HPM correlates of self-reported malaria among people living within malaria hotspots. METHODS: 526 individuals from 279 households in two malaria hotspot areas were included in a prospective observational study. A baseline cross-sectional study was conducted at the beginning, recording both individual- and household-level characteristics. Individual movement and travel patterns were repeatedly observed over one dry season month (March) and one wet season month (May). Descriptive statistics, random effects logistic regressions, and logistic regressions were used to describe and determine associations between HPM patterns, individual-, household-factors, and self-reported malaria. RESULTS: Trips were more common in the dry season. Malaria risk was related to the number of days doing outdoor activities in the dry season, especially trips to Myanmar, to forest areas, and overnight trips. Trips to visit forest areas were more common among participants aged 20-39, males, individuals with low income, low education, and especially among individuals with forest-related occupations. Overnight trips were more common among males, and individual with forest-related occupations. Forty-five participants reported having confirmed malaria infection within the last year. The main place of malaria blood examination and treatment was malaria post and malaria clinic, with participants usually waiting for 2-3 days from onset fever to seeking diagnosis. Individuals using bed nets, living in houses with elevated floors, and houses that received indoor residual spraying in the last year were less likely to report malaria infection. CONCLUSION: An understanding of HPM and concurrent malaria dynamics is important for consideration of targeted public health interventions. Furthermore, diagnosis and treatment centres must be capable of quickly diagnosing and treating infections regardless of HPM. Coverage of diagnosis and treatment centres should be broad, maintained in areas bordering malaria hotspots, and available to all febrile individuals.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Migración Humana , Malaria/epidemiología , Viaje , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Composición Familiar , Femenino , Humanos , Malaria/prevención & control , Malaria/transmisión , Masculino , Persona de Mediana Edad , Mianmar/epidemiología , Prevalencia , Estudios Prospectivos , Tailandia/epidemiología , Adulto Joven
16.
Clin Infect Dis ; 67(2): 295-302, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29757358

RESUMEN

Assessing the importance of targeting the chronic Plasmodium falciparum malaria reservoir is pivotal as the world moves toward malaria eradication. Through the lens of a mathematical model, we show how, for a given malaria prevalence, the relative infectivity of chronic individuals determines what intervention tools are predicted be the most effective. Crucially, in a large part of the parameter space where elimination is theoretically possible, it can be achieved solely through improved case management. However, there are a significant number of settings where malaria elimination requires not only good vector control but also a mass drug administration campaign. Quantifying the relative infectiousness of chronic malaria across a range of epidemiological settings would provide essential information for the design of effective malaria elimination strategies. Given the difficulties obtaining this information, we also provide a set of epidemiological metrics that can be used to guide policy in the absence of such data.


Asunto(s)
Erradicación de la Enfermedad/métodos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Animales , Antimaláricos/uso terapéutico , Enfermedad Crónica/tratamiento farmacológico , Reservorios de Enfermedades/parasitología , Humanos , Administración Masiva de Medicamentos , Modelos Teóricos , Control de Mosquitos , Prevalencia
17.
Chemistry ; 24(30): 7761-7773, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29633393

RESUMEN

Through this extensive structure-property study we show that critical micelle concentration correlates with self-associative hydrogen bond complex formation constant, when combined with outputs from low level, widely accessible, computational models. Herein, we bring together a series of 39 structurally related molecules related by stepwise variation of a hydrogen bond donor-acceptor amphiphilic salt. The self-associative and corresponding global properties for this family of compounds have been studied in the gas, solid and solution states. Within the solution state, we have shown the type of self-associated structure present to be solvent dependent. In DMSO, this class of compound show a preference for hydrogen bonded dimer formation, however moving into aqueous solutions the same compounds are found to form larger self-associated aggregates. This observation has allowed us the unique opportunity to investigate and begin to predict self-association events at both the molecular and extended aggregate level.

18.
BMC Pediatr ; 18(1): 109, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534694

RESUMEN

BACKGROUND: Dengue fever is a re-emerging viral disease commonly occurring in tropical and subtropical areas. The clinical features and abnormal laboratory test results of dengue infection are similar to those of other febrile illnesses; hence, its accurate and timely diagnosis for providing appropriate treatment is difficult. Delayed diagnosis may be associated with inappropriate treatment and higher risk of death. Early and correct diagnosis can help improve case management and optimise the use of resources such as hospital staff, beds, and intensive care equipment. The goal of this study was to develop a predictive model to characterise dengue severity based on early clinical and laboratory indicators using data mining and statistical tools. METHODS: We retrieved data from a study of febrile illness in children at Angkor Hospital for Children, Cambodia. Of 1225 febrile episodes recorded, 198 patients were confirmed to have dengue. A classification and regression tree (CART) was used to construct a predictive decision tree for severe dengue, while logistic regression analysis was used to independently quantify the significance of each parameter in the decision tree. RESULTS: A decision tree algorithm using haematocrit, Glasgow Coma Score, urine protein, creatinine, and platelet count predicted severe dengue with a sensitivity, specificity, and accuracy of 60.5%, 65% and 64.1%, respectively. CONCLUSIONS: The decision tree we describe, using five simple clinical and laboratory indicators, can be used to predict severe cases of dengue among paediatric patients on admission. This algorithm is potentially useful for guiding a patient-monitoring plan and outpatient management of fever in resource-poor settings.


Asunto(s)
Toma de Decisiones Clínicas/métodos , Árboles de Decisión , Dengue/diagnóstico , Índice de Severidad de la Enfermedad , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad , Dengue Grave/diagnóstico
19.
Artículo en Inglés | MEDLINE | ID: mdl-28993326

RESUMEN

Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Humanos , Modelos Biológicos
20.
Malar J ; 16(1): 483, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183370

RESUMEN

BACKGROUND: The number of Plasmodium falciparum malaria cases around the world has decreased substantially over the last 15 years, but with the spread of resistance against anti-malarial drugs and insecticides, this decline may not continue. There is an urgent need to consider alternative, accelerated strategies to eliminate malaria in countries like Lao PDR, where there are a few remaining endemic areas. A deterministic compartmental modelling tool was used to develop an integrated strategy for P. falciparum elimination in the Savannakhet province of Lao PDR. The model was designed to include key aspects of malaria transmission and integrated control measures, along with a user-friendly interface. RESULTS: Universal coverage was the foundation of the integrated strategy, which took the form of the deployment of community health workers who provided universal access to early diagnosis, treatment and long-lasting insecticidal nets. Acceleration was included as the deployment of three monthly rounds of mass drug administration targeted towards high prevalence villages, with the addition of three monthly doses of the RTS,S vaccine delivered en masse to the same high prevalence sub-population. A booster dose of vaccine was added 1 year later. The surveillance-as-intervention component of the package involved the screening and treatment of individuals entering the simulated population. CONCLUSIONS: In this modelling approach, the sequential introduction of a series of five available interventions in an integrated strategy was predicted to be sufficient to stop malaria transmission within a 3-year period. These interventions comprised universal access to early diagnosis and adequate treatment, improved access to long-lasting insecticidal nets, three monthly rounds of mass drug administration together with RTS,S vaccination followed by a booster dose of vaccine, and screening and treatment of imported cases.


Asunto(s)
Agentes Comunitarios de Salud/estadística & datos numéricos , Erradicación de la Enfermedad/métodos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Cobertura Universal del Seguro de Salud/estadística & datos numéricos , Diagnóstico Precoz , Geografía , Humanos , Laos , Malaria Falciparum/transmisión , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA