Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(10): e0037923, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823643

RESUMEN

Clostridioides (Clostridium) difficile is a leading cause of infectious diarrhea in humans and production animals and can be found in a variety of environmental sources. The prevalence and diversity of multi-locus sequence type clade 5 strains of C. difficile in Australian production animals suggest Australia might be the ancestral home of this lineage of One Health importance. To better understand the role of the environment in the colonization of humans and animals in Australia, it is important to investigate these endemic sources. This study describes the prevalence, molecular epidemiology, and biogeographic distribution of C. difficile in soils of Western Australia. A total of 321 soil samples from remote geographical locations across the eight health regions of Western Australia were screened for C. difficile and isolates characterized by PCR ribotyping and toxin gene profiling. C. difficile was isolated from 31.15% of samples, with the highest prevalence in the Perth Metropolitan Health Region (49.25%, n = 33/67). Overall, 52 different strains [PCR ribotypes (RTs)] were identified, with 14 being novel, and 38% (38/100) of isolates being toxigenic, the most common of which was RT014/020. Five unique novel isolates showed characteristics similar to C. difficile clade 5. This is the first study of C. difficile isolated from soils in Australia. The high prevalence and heterogeneity of C. difficile strains recovered suggest that soils play a role in the survival and environmental dissemination of this organism, and potentially its transmission among native wildlife and production animals, and in community and hospital settings.IMPORTANCEClostridium difficile is a pathogen of One Health importance. To better understand the role of the environment in human and animal colonization/infection, it is critical that autochthonous reservoirs/sources of C. difficile be investigated. This is the first study of C. difficile isolated from soils of Western Australia (WA). Here, the ecology of C. difficile in WA is described by examining the geographic distribution, molecular epidemiology, and diversity of C. difficile isolated from soils across WA.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Humanos , Australia/epidemiología , Clostridioides/genética , Epidemiología Molecular , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/veterinaria , Ribotipificación , Clostridium/genética
2.
Environ Microbiol ; 24(7): 3097-3110, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35384236

RESUMEN

Stored topsoil acts as a microbial inoculant for ecological restoration of land after disturbance, but the altered circumstances frequently create unfavourable conditions for microbial survival. Nitrogen cycling is a critical indicator for ecological success and this study aimed to investigate the cornerstone taxa driving the process. Previous in silico studies investigating stored topsoil discovered persistent archaeal taxa with the potential for re-establishing ecological activity. Ammonia oxidization is the limiting step in nitrification and as such, ammonia-oxidizing archaea (AOA) can be considered one of the gatekeepers for the re-establishment of the nitrogen cycle in disturbed soils. Semi-arid soil samples were enriched with ammonium sulfate to promote the selective enrichment of ammonia oxidizers for targeted genomic recovery, and to investigate the microbial response of the microcosm to nitrogen input. Ammonia addition produced an increase in AOA population, particularly within the genus Candidatus Nitrosotalea, from which metagenome-assembled genomes (MAGs) were successfully recovered. The Ca. Nitrosotalea archaeon candidates' ability to survive in extreme conditions and rapidly respond to ammonia input makes it a potential bioprospecting target for application in ecological restoration of semi-arid soils and the recovered MAGs provide a metabolic blueprint for developing potential strategies towards isolation of these acclimated candidates.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Archaea/metabolismo , Bacterias , Ecosistema , Metagenoma , Nitrificación , Nitrógeno/metabolismo , Oxidación-Reducción , Suelo , Microbiología del Suelo
3.
Crit Rev Microbiol ; 48(5): 641-655, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35100064

RESUMEN

Microorganisms and their natural products are major drivers of ecological processes and industrial applications. Microbial bioprospecting has been critical for the advancement in various fields such as pharmaceuticals, sustainable industries, food security and bioremediation. Next generation sequencing has been paramount in the exploration of diverse environmental microbiomes. It presents a culture-independent approach to investigating hitherto uncultured taxa, resulting in the creation of massive sequence databases, which are available in the public domain. Genome mining searches available (meta)genomic data for target biosynthetic genes, and combined with the large-scale public data, this in-silico bioprospecting method presents an efficient and extensive way to uncover microbial bioproducts. Bioinformatic tools have progressed to a stage where we can recover genomes from the environment; these metagenome-assembled genomes present a way to understand the metabolic capacity of microorganisms in a physiological and ecological context. Environmental sampling been extensive across various ecological settings, including microbiomes with unique physicochemical properties that could influence the discovery of novel functions and metabolic pathways. Although in-silico methods cannot completely substitute in-vitro studies, the contextual information it provides is invaluable for understanding the ecological and taxonomic distribution of microbial genotypes and to form effective strategies for future microbial bioprospecting efforts.


Asunto(s)
Metagenómica , Microbiota , Biodegradación Ambiental , Bioprospección , Metagenoma , Metagenómica/métodos , Microbiota/fisiología
5.
Microb Ecol ; 73(3): 645-657, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27838764

RESUMEN

CO2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14C (14C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14C-labeled soil organic carbon (14C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14C-SOC level, and 14C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO2-fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.


Asunto(s)
Procesos Autotróficos/fisiología , Bacterias/metabolismo , Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Microbiología del Suelo , Procesos Autotróficos/genética , Bacterias/enzimología , Bacterias/genética , Carbono/metabolismo , ADN Bacteriano/genética , Bosques , Pradera , Ribulosa-Bifosfato Carboxilasa/metabolismo , Suelo/química , Humedales
6.
Appl Environ Microbiol ; 79(3): 965-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204423

RESUMEN

Closely related bacterial isolates can display divergent phenotypes. This can limit the usefulness of phylogenetic studies for understanding bacterial ecology and evolution. Here, we compare phenotyping based on Raman spectrometric analysis of cellular composition to phylogenetic classification by ribosomal multilocus sequence typing (rMLST) in 108 isolates of the zoonotic pathogens Campylobacter jejuni and C. coli. Automatic relevance determination (ARD) was used to identify informative peaks in the Raman spectra that could be used to distinguish strains in taxonomic and host source groups (species, clade, clonal complex, and isolate source/host). Phenotypic characterization based on Raman spectra showed a degree of agreement with genotypic classification using rMLST, with segregation accuracy between species (83.95%), clade (in C. coli, 98.41%), and, to some extent, clonal complex (86.89% C. jejuni ST-21 and ST-45 complexes) being achieved. This confirmed the utility of Raman spectroscopy for lineage classification and the correlation between genotypic and phenotypic classification. In parallel analysis, relatively distantly related isolates (different clonal complexes) were assigned the correct host origin irrespective of the clonal origin (74.07 to 96.97% accuracy) based upon different Raman peaks. This suggests that the phenotypic characteristics, from which the phenotypic signal is derived, are not fixed by clonal descent but are influenced by the host environment and change as strains move between hosts.


Asunto(s)
Campylobacter coli/clasificación , Campylobacter jejuni/clasificación , Tipificación de Secuencias Multilocus/métodos , Espectrometría Raman/métodos , Campylobacter coli/química , Campylobacter coli/genética , Campylobacter jejuni/química , Campylobacter jejuni/genética , Genotipo , Fenotipo , Ribosomas/genética
7.
Proc Natl Acad Sci U S A ; 107(24): 10938-42, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534474

RESUMEN

Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO(2) modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO(2) conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO(2) clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO(2) concentrations and terrestrial ecosystems.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecosistema , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Atmósfera/química , Bacterias/genética , Bacterias/metabolismo , Isótopos de Carbono/metabolismo , Carex (Planta)/metabolismo , Carex (Planta)/microbiología , Cambio Climático , Festuca/metabolismo , Festuca/microbiología , Hongos/genética , Hongos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Micorrizas/metabolismo , ARN Bacteriano/genética , ARN de Hongos/genética , Suelo/análisis , Microbiología del Suelo
8.
Environ Microbiol ; 14(9): 2293-307, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22591022

RESUMEN

Since industrialization global CO(2) emissions have increased, and as a consequence oceanic pH is predicted to drop by 0.3-0.4 units before the end of the century - a process coined 'ocean acidification'. Consequently, there is significant interest in how pH changes will affect the ocean's biota and integral processes. We investigated marine picoplankton (0.2-2 µm diameter) community response to predicted end of century CO(2) concentrations, via a 'high-CO(2) ' (∼ 750 ppm) large-volume (11 000 l) contained seawater mesocosm approach. We found little evidence of changes occurring in bacterial abundance or community composition due to elevated CO(2) under both phytoplankton pre-bloom/bloom and post-bloom conditions. In contrast, significant differences were observed between treatments for a number of key picoeukaryote community members. These data suggested a key outcome of ocean acidification is a more rapid exploitation of elevated CO(2) levels by photosynthetic picoeukaryotes. Thus, our study indicates the need for a more thorough understanding of picoeukaryote-mediated carbon flow within ocean acidification experiments, both in relation to picoplankton carbon sources, sinks and transfer to higher trophic levels.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Agua de Mar/química , Bacterias/clasificación , Bacterias/genética , Carbono/metabolismo , Dióxido de Carbono/química , Eucariontes/fisiología , Concentración de Iones de Hidrógeno , Océanos y Mares , Filogenia , Fitoplancton/fisiología
9.
Environ Microbiol ; 13(6): 1642-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21507180

RESUMEN

Despite recognition of the importance of soil bacteria to terrestrial ecosystem functioning there is little consensus on the factors regulating belowground biodiversity. Here we present a multi-scale spatial assessment of soil bacterial community profiles across Great Britain (> 1000 soil cores), and show the first landscape scale map of bacterial distributions across a nation. Bacterial diversity and community dissimilarities, assessed using terminal restriction fragment length polymorphism, were most strongly related to soil pH providing a large-scale confirmation of the role of pH in structuring bacterial taxa. However, while α diversity was positively related to pH, the converse was true for ß diversity (between sample variance in α diversity). ß diversity was found to be greatest in acidic soils, corresponding with greater environmental heterogeneity. Analyses of clone libraries revealed the pH effects were predominantly manifest at the level of broad bacterial taxonomic groups, with acidic soils being dominated by few taxa (notably the group 1 Acidobacteria and Alphaproteobacteria). We also noted significant correlations between bacterial communities and most other measured environmental variables (soil chemistry, aboveground features and climatic variables), together with significant spatial correlations at close distances. In particular, bacterial and plant communities were closely related signifying no strong evidence that soil bacteria are driven by different ecological processes to those governing higher organisms. We conclude that broad scale surveys are useful in identifying distinct soil biomes comprising reproducible communities of dominant taxa. Together these results provide a baseline ecological framework with which to pursue future research on both soil microbial function, and more explicit biome based assessments of the local ecological drivers of bacterial biodiversity.


Asunto(s)
Bacterias/genética , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , Secuencia de Bases , Biodiversidad , Ecosistema , Variación Genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Reino Unido
10.
Front Microbiol ; 12: 649594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248867

RESUMEN

Lake Magic is an extremely acidic, hypersaline lake found in Western Australia, with the highest concentrations of aluminum and silica in the world. Previous studies of Lake Magic diversity have revealed that the lake hosts acid- and halotolerant bacterial and fungal species. However, they have not canvassed microbial population dynamics across flooding, evapo-concentration and desiccation stages. In this study, we used amplicon sequencing and potential function prediction on sediment and salt mat samples. We observed that the bacterial and fungal diversity in Lake Magic is strongly driven by carbon, temperature, pH and salt concentrations at the different stages of the lake. We also saw that the fungal diversity decreased as the environmental conditions became more extreme. However, prokaryotic diversity was very dynamic and bacteria dominated archaeal species, both in abundance and diversity, perhaps because bacteria better tolerate the extreme variation in conditions. Bacterial species diversity was the highest during early flooding stage and decreased during more stressful conditions. We observed an increase in acid tolerant and halotolerant species in the sediment, involved in functions such as sulfur and iron metabolism, i.e., species involved in buffering the external environment. Thus, due to activity within the microbial community, the environmental conditions in the sediment do not change to the same degree as conditions in the salt mat, resulting in the sediment becoming a safe haven for microbes, which are able to thrive during the extreme conditions of the evapo-concentration and desiccation stages.

11.
Front Microbiol ; 12: 697309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322108

RESUMEN

The accumulation of petroleum-based plastic waste has become a major issue for the environment. A sustainable and biodegradable solution can be found in Polyhydroxyalkanoates (PHAs), a microbially produced biopolymer. An analysis of the global phylogenetic and ecological distribution of potential PHA producing bacteria and archaea was carried out by mining a global genome repository for PHA synthase (PhaC), a key enzyme involved in PHA biosynthesis. Bacteria from the phylum Actinobacteria were found to contain the PhaC Class II genotype which produces medium-chain length PHAs, a physiology until now only found within a few Pseudomonas species. Further, several PhaC genotypes were discovered within Thaumarchaeota, an archaeal phylum with poly-extremophiles and the ability to efficiently use CO2 as a carbon source, a significant ecological group which have thus far been little studied for PHA production. Bacterial and archaeal PhaC genotypes were also observed in high salinity and alkalinity conditions, as well as high-temperature geothermal ecosystems. These genome mining efforts uncovered previously unknown candidate taxa for biopolymer production, as well as microbes from environmental niches with properties that could potentially improve PHA production. This in silico study provides valuable insights into unique PHA producing candidates, supporting future bioprospecting efforts toward better targeted and relevant taxa to further enhance the diversity of exploitable PHA production systems.

12.
Sci Total Environ ; 781: 146526, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33798899

RESUMEN

Traditional environmental monitoring techniques are well suited to resolving acute exposure effects but lack resolution in determining subtle shifts in ecosystem functions resulting from chronic exposure(s). Surveillance with sensitive omics-based technologies could bridge this gap but, to date, most omics-based environmental studies have focused on previously degraded environments, identifying key metabolic differences resulting from anthropogenic perturbations. Here, we apply omics-based approaches to pristine environments to establish blueprints of microbial functionality within healthy estuarine sediment communities. We collected surface sediments (n = 50) from four pristine estuaries along the Western Cape York Peninsula of Far North Queensland, Australia. Sediment microbiomes were analyzed for 16S rRNA amplicon sequences, central carbon metabolism metabolites and associated secondary metabolites via targeted and untargeted metabolic profiling methods. Multivariate statistical analyses indicated heterogeneity among all the sampled estuaries, however, taxa-function relationships could be established that predicted community metabolism potential. Twenty-four correlated gene-metabolite pathways were identified and used to establish sediment microbial blueprints of essential carbon metabolism and amino acid biosynthesis that were positively correlated with community metabolic function outputs (2-oxisocapraote, tryptophan, histidine citrulline and succinic acid). In addition, an increase in the 125 KEGG genes related to metal homeostasis and metal resistance was observed, although, none of the detected metabolites related to these specific genes upon integration. However, there was a correlation between metal abundance and functional genes related to Fe and Zn metabolism. Our results establish a baseline microbial blueprint for the pristine sediment microbiome, one that drives important ecosystem services and to which future ecosurveillance monitoring can be compared.

13.
Environ Microbiol ; 12(12): 3253-63, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20649644

RESUMEN

The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities.


Asunto(s)
Bacterias/aislamiento & purificación , Fenol/metabolismo , Aguas del Alcantarillado/microbiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Fenotipo
14.
Biol Lett ; 6(5): 639-42, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20219744

RESUMEN

Productivity and predation are thought to be crucial drivers of bacterial diversity. We tested how the productivity-diversity of a natural bacterial community is modified by the presence of protist predators with different feeding preferences. In the absence of predators, there was a unimodal relationship between bacterial diversity and productivity. We found that three protist species (Bodo, Spumella and Cyclidium) had widely divergent effects on bacterial diversity across the productivity gradient. Bodo and Cyclidium had little effect on the shape of the productivity-diversity gradient, while Spumella flattened the relationship. We explain these results in terms of the feeding preferences of these predators.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Eucariontes , Ecosistema
15.
Microb Ecol ; 59(2): 335-43, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19705192

RESUMEN

Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO(2)-C efflux.


Asunto(s)
Bacterias/genética , Biodiversidad , Poaceae/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , ADN Bacteriano/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Escocia , Análisis de Secuencia de ADN , Suelo/análisis
16.
Appl Environ Microbiol ; 75(22): 7173-81, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19783743

RESUMEN

The bacterioneuston is the community of Bacteria present in surface microlayers, the thin surface film that forms the interface between aquatic environments and the atmosphere. In this study we compared bacterial cell abundances and bacterial community structures of the bacterioneuston and the bacterioplankton (from the subsurface water column) during a phytoplankton bloom mesocosm experiment. Bacterial cell abundance, determined by flow cytometry, followed a typical bacterioplankton response to a phytoplankton bloom, with Synechococcus and high-nucleic acid content (HNA) bacterial cell numbers initially falling, probably due to selective protist grazing. Subsequently HNA and low-nucleic acid content bacterial cells increased in abundance, but Synechococcus cells did not. There was no significant difference between bacterioneuston and bacterioplankton cell abundances during the experiment. Conversely, distinct and consistent differences between the bacterioneuston and the bacterioplankton community structures were observed. This was monitored simultaneously by Bacteria 16S rRNA gene terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis. The conserved patterns of community structure observed in all of the mesocosms indicate that the bacterioneuston is distinctive and nonrandom.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biodiversidad , Agua Dulce/microbiología , Fitoplancton/crecimiento & desarrollo , Plancton/microbiología , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Recuento de Colonia Microbiana , ADN Bacteriano/genética , Agua Dulce/química , Variación Genética , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Dinámica Poblacional , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
17.
Appl Environ Microbiol ; 75(1): 234-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18997025

RESUMEN

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope ((13)C)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 muM. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.


Asunto(s)
Isótopos de Carbono/análisis , Hibridación Fluorescente in Situ/métodos , Naftalenos/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , Coloración y Etiquetado/métodos , Comamonadaceae/aislamiento & purificación , Comamonadaceae/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Pseudomonas fluorescens/aislamiento & purificación , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/aislamiento & purificación , Pseudomonas putida/metabolismo , Análisis de Secuencia de ADN , Microbiología del Agua
18.
Front Microbiol ; 10: 1617, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354694

RESUMEN

Mining of mineral resources substantially alters both the above and below-ground soil ecosystem, which then requires rehabilitation back to a pre-mining state. For belowground rehabilitation, recovery of the soil microbiome to a state which can support key biogeochemical cycles, and effective plant colonization is usually required. One solution proposed has been to translate microbial inocula from agricultural systems to mine rehabilitation scenarios, as a means of reconditioning the soil microbiome for planting. Here, we experimentally determine both the aboveground plant fitness outcomes and belowground soil microbiome effects of a commercially available soil microbial inocula (SMI). We analyzed treatment effects at four levels of complexity; no SMI addition control, Nitrogen addition alone, SMI addition and SMI plus Nitrogen addition over a 12-week period. Our culture independent analyses indicated that SMIs had a differential response over the 12-week incubation period, where only a small number of the consortium members persisted in the semi-arid ecosystem, and generated variable plant fitness responses, likely due to plant-microbiome physiological mismatching and low survival rates of many of the SMI constituents. We suggest that new developments in custom-made SMIs to increase rehabilitation success in mine site restoration are required, primarily based upon the need for SMIs to be ecologically adapted to both the prevailing edaphic conditions and a wide range of plant species likely to be encountered.

19.
Methods Mol Biol ; 2046: 31-44, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31407294

RESUMEN

Stable isotope probing is a combined molecular and isotopic technique used to probe the identity and function of uncultivated microorganisms within environmental samples. Employing stable isotopes of common elements such as carbon and nitrogen, RNA-SIP exploits an increase in the buoyant density of RNA caused by the active metabolism and incorporation of heavier mass isotopes into the RNA after cellular utilization of labeled substrates pulsed into the community. Labeled RNAs are subsequently separated from unlabeled RNAs by density gradient centrifugation followed by identification of the RNAs by sequencing. Therefore, RNA stable isotope probing is a culture-independent technique that provides simultaneous information about microbiome community, composition and function. This chapter presents the detailed protocol for performing an RNA-SIP experiment, including the formation, ultracentrifugation, and fractional analyses of stable isotope-labeled RNAs extracted from environmental samples.


Asunto(s)
Marcaje Isotópico/métodos , Sondas ARN/metabolismo , Isótopos de Carbono/química , Centrifugación por Gradiente de Densidad/instrumentación , Centrifugación por Gradiente de Densidad/métodos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Microbiota/genética , ARN/aislamiento & purificación , ARN/metabolismo , Sondas ARN/genética , ARN Ribosómico 16S/metabolismo , Espectrometría Raman , Flujo de Trabajo
20.
Front Microbiol ; 10: 2143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608023

RESUMEN

Biocrusts are aggregated crusts that exist on the soil surface of arid environments. They are complex microbial communities comprised of cyanobacteria, lichens, mosses, algae and fungi. Recently, biocrusts have gained significant attention due to their ubiquitous distribution and likely important ecological roles, including soil stabilization, soil moisture retention, carbon (C) and nitrogen (N) fixation, as well as microbial engineers for semi-arid ecosystem restoration. Here, we collected three co-occurring types of biocrust (Cyanobacterial crust, Crustose lichen, and Foliose lichen) and their underlying soil from arid zones within Western Australia. Bacterial microbiome composition was determined through 16S rRNA gene amplicon sequencing to assess the extent of microbiome selection within the crusts versus underlying soil and biogeochemical measures performed to determine whether the crusts had significant impact upon the underlying soil for nutrient input. We determined that the bacterial communities of native biocrusts are distinct from those in their underlying soil, where dominant bacterial taxa differed according to crust morphologies. δ15N revealed that N-fixation appeared most evident in Foliose lichen crust (1.73 ± 1.04‰). Consequently, depending upon the crust type, biocrusts contained higher concentrations of organic C (2 to 50 times), total N (4 to 16 times) and available ammonium (2 to 4 times), though this enrichment did not extend to the soils underneath them. These findings demonstrate that biocrust communities are seemingly islands of biological activity in an arid landscape, uniquely different from their surrounding and underlying soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA