Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(4): e9691, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38212653

RESUMEN

A model reaction between di-n-butylamine and sodium nitrite was studied to investigate trace-level N-nitrosamine formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of kinetic time points from an in-progress reaction showed a systematic offset in nitrosamine concentration between quenched and unquenched samples. By combining samples of amine and nitrite in the needle of the autosampler it was demonstrated that N-nitrosamine was formed in the LC-MS system. Further experimentation indicated that nitrosation was occurring on-column.

2.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32934009

RESUMEN

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Asunto(s)
Dictyostelium/enzimología , Prolil Hidroxilasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Prolil Hidroxilasas/química , Prolil Hidroxilasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
3.
Nat Chem Biol ; 14(10): 955-963, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224694

RESUMEN

Isotopic replacement has long-proven applications in small molecules. However, applications in proteins are largely limited to biosynthetic strategies or exchangeable (for example, N-H/D) labile sites only. The development of postbiosynthetic, C-1H → C-2H/D replacement in proteins could enable probing of mechanisms, among other uses. Here we describe a chemical method for selective protein α-carbon deuteration (proceeding from Cys to dehydroalanine (Dha) to deutero-Cys) allowing overall 1H→2H/D exchange at a nonexchangeable backbone site. It is used here to probe mechanisms of reactions used in protein bioconjugation. This analysis suggests, together with quantum mechanical calculations, stepwise deprotonations via on-protein carbanions and unexpected sulfonium ylides in the conversion of Cys to Dha, consistent with a 'carba-Swern' mechanism. The ready application on existing, intact protein constructs (without specialized culture or genetic methods) suggests this C-D labeling strategy as a possible tool in protein mechanism, structure, biotechnology and medicine.


Asunto(s)
Alanina/análogos & derivados , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteómica/métodos , Alanina/química , Sitios de Unión , Cisteína/química , Medición de Intercambio de Deuterio , Proteínas Fluorescentes Verdes/química , Histonas/química , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Solventes/química
4.
Brain ; 142(12): 3713-3727, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633155

RESUMEN

Acetylcholine receptor deficiency is the most common form of the congenital myasthenic syndromes, a heterogeneous collection of genetic disorders of neuromuscular transmission characterized by fatiguable muscle weakness. Most patients with acetylcholine receptor deficiency respond well to acetylcholinesterase inhibitors; however, in some cases the efficacy of acetylcholinesterase inhibitors diminishes over time. Patients with acetylcholine receptor deficiency can also benefit from the addition of a ß2-adrenergic receptor agonist to their medication. The working mechanism of ß2-adrenergic agonists in myasthenic patients is not fully understood. Here, we report the long-term follow-up for the addition of ß2-adrenergic agonists for a cohort of patients with acetylcholine receptor deficiency on anticholinesterase medication that demonstrates a sustained quantitative improvement. Coincidently we used a disease model to mirror the treatment of acetylcholine receptor deficiency, and demonstrate improved muscle fatigue, improved neuromuscular transmission and improved synaptic structure resulting from the addition of the ß2-adrenergic agonist salbutamol to the anticholinesterase medication pyridostigmine. Following an initial improvement in muscle fatiguability, a gradual decline in the effect of pyridostigmine was observed in mice treated with pyridostigmine alone (P < 0.001). Combination therapy with pyridostigmine and salbutamol counteracted this decline (P < 0.001). Studies of compound muscle action potential decrement at high nerve stimulation frequencies (P < 0.05) and miniature end-plate potential amplitude analysis (P < 0.01) showed an improvement in mice following combination therapy, compared to pyridostigmine monotherapy. Pyridostigmine alone reduced postsynaptic areas (P < 0.001) and postsynaptic folding (P < 0.01). Combination therapy increased postsynaptic area (P < 0.001) and promoted the formation of postsynaptic junctional folds (P < 0.001), in particular in fast-twitch muscles. In conclusion, we demonstrate for the first time how the improvement seen in patients from adding salbutamol to their medication can be explained in an experimental model of acetylcholine receptor deficiency, the most common form of congenital myasthenic syndrome. Salbutamol enhances neuromuscular junction synaptic structure by counteracting the detrimental effects of long-term acetylcholinesterase inhibitors on the postsynaptic neuromuscular junction. The results have implications for both autoimmune and genetic myasthenias where anticholinesterase medication is a standard treatment.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Albuterol/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Unión Neuromuscular/efectos de los fármacos , Bromuro de Piridostigmina/uso terapéutico , Potenciales de Acción/fisiología , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Albuterol/uso terapéutico , Animales , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Bromuro de Piridostigmina/farmacología , Transmisión Sináptica/efectos de los fármacos
5.
J Med Genet ; 53(3): 200-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26378117

RESUMEN

BACKGROUND: A homozygous loss-of-function mutation p.(Arg316Gln) in the fat mass and obesity-associated (FTO) gene, which encodes for an iron and 2-oxoglutarate-dependent oxygenase, was previously identified in a large family in which nine affected individuals present with a lethal syndrome characterised by growth retardation and multiple malformations. To date, no other pathogenic mutation in FTO has been identified as a cause of multiple congenital malformations. METHODS: We investigated a 21-month-old girl who presented distinctive facial features, failure to thrive, global developmental delay, left ventricular cardiac hypertrophy, reduced vision and bilateral hearing loss. We performed targeted next-generation sequencing of 4813 clinically relevant genes in the patient and her parents. RESULTS: We identified a novel FTO homozygous missense mutation (c.956C>T; p.(Ser319Phe)) in the affected individual. This mutation affects a highly conserved residue located in the same functional domain as the previously characterised mutation p.(Arg316Gln). Biochemical studies reveal that p.(Ser319Phe) FTO has reduced 2-oxoglutarate turnover and N-methyl-nucleoside demethylase activity. CONCLUSION: Our findings are consistent with previous reports that homozygous mutations in FTO can lead to rare growth retardation and developmental delay syndrome, and further support the proposal that FTO plays an important role in early development of human central nervous and cardiovascular systems.


Asunto(s)
Discapacidades del Desarrollo/genética , Mutación Missense , Proteínas/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante
6.
J Pharm Sci ; 113(6): 1624-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38307493

RESUMEN

The potential for drug substances and drug products to contain low levels of N-nitrosamines is of continued interest to the pharmaceutical industry and regulatory authorities. Acid-promoted nitrosation mechanisms in solution have been investigated widely in the literature and are supported by kinetic modelling studies. Carbonyl compounds, particularly formaldehyde, which may be present as impurities in excipients and drug product packaging components or introduced during drug substance manufacturing processes are also known to catalyze nitrosation, but their impact on the risk of N-nitrosamine formation has not been systematically investigated to date. In this study, we experimentally investigated the multivariate impact of formaldehyde, nitrite and pH on N-nitrosation in aqueous solution using dibutylamine as a model amine. We augmented a published kinetic model by adding formaldehyde-catalyzed nitrosation reactions. We validated the new kinetic model vs. the experimental data and then used the model to systematically investigate the impact of formaldehyde levels on N-nitrosamine formation. Simulations of aqueous solution systems show that at low formaldehyde levels the formaldehyde-catalyzed mechanisms are insignificant in comparison to other routes. However, formaldehyde-catalyzed mechanisms can become more significant at neutral and high pH under higher formaldehyde levels. Model-based sensitivity analysis demonstrated that under high nitrite levels and low formaldehyde levels (where the rate of formaldehyde-catalyzed nitrosation is low compared to the acid-promoted pathways) the model can be used with kinetic parameters for model amines in the literature without performing additional experiments to fit amine-specific parameters. For other combinations of reaction parameters containing formaldehyde, the formaldehyde-catalyzed kinetics are non-negligible, and thus it is advised that, under such conditions, additional experiments should be conducted to reliably use the model.


Asunto(s)
Aminas , Formaldehído , Formaldehído/química , Cinética , Catálisis , Concentración de Iones de Hidrógeno , Aminas/química , Nitrosaminas/química , Nitritos/química , Modelos Químicos , Nitrosación
7.
Br J Pharmacol ; 175(6): 938-952, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29278865

RESUMEN

BACKGROUND AND PURPOSE: Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca2+ release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. EXPERIMENTAL APPROACH: RyR1 and RyR2 single-channel behaviour was investigated after incorporation of sheep cardiac or mouse skeletal SR into planar phospholipid bilayers under voltage-clamp conditions. LC-MS was used to monitor the kinetics of interconversion of simvastatin between hydroxy-acid and lactone forms during these experiments. Cardiac and skeletal myocytes were permeabilised to examine simvastatin modulation of SR Ca2+ release. KEY RESULTS: Hydroxy acid simvastatin (active at HMG-CoA reductase) significantly and reversibly increased RyR1 open probability (Po) and shifted the distribution of Ca2+ spark frequency towards higher values in skeletal fibres. In contrast, simvastatin reduced RyR2 Po and shifted the distribution of spark frequency towards lower values in ventricular cardiomyocytes. The lactone pro-drug form of simvastatin (inactive at HMG-CoA reductase) also activated RyR1, suggesting that the HMG-CoA inhibitor pharmacophore was not responsible for RyR1 activation. CONCLUSION AND IMPLICATIONS: Simvastatin interacts with RyR1 to increase SR Ca2+ release and thus may contribute to its reported adverse effects on skeletal muscle. The ability of low concentrations of simvastatin to reduce RyR2 Po may also protect against Ca2+ -dependent arrhythmias and sudden cardiac death.


Asunto(s)
Calcio/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Simvastatina/análogos & derivados , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Ovinos , Simvastatina/farmacología
8.
FEBS Lett ; 591(16): 2394-2405, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28752893

RESUMEN

Viperin, a radical-S-adenosylmethionine (SAM) enzyme conserved from fungi to humans, can restrict replication of many viruses. Neither the molecular mechanism underlying the antiviral activity of Viperin, nor its exact physiological function, is understood: most importantly, no radical-SAM activity has been discovered for Viperin. Here, using electron paramagnetic resonance (EPR) spectroscopy, mass spectrometry, and NMR spectroscopy, we show that uridine diphosphate glucose (UDP-glucose) is a substrate of a fungal Viperin (58% pairwise identity with human Viperin at the amino acid level) in vitro. Structural homology modeling and docking experiments reveal a highly conserved binding pocket in which the position of UDP-glucose is consistent with our experimental data regarding catalytic addition of a 5'-deoxyadenosyl radical and a hydrogen atom to UDP-glucose.


Asunto(s)
Biocatálisis , Desoxiadenosinas/metabolismo , Proteínas Fúngicas/metabolismo , S-Adenosilmetionina/metabolismo , Uridina Difosfato Glucosa/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Desoxiadenosinas/química , Radicales Libres/química , Radicales Libres/metabolismo , Proteínas Fúngicas/química , Hidrógeno , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Conformación Proteica , Sordariales/enzimología
9.
Nat Commun ; 8: 14690, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332493

RESUMEN

Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilization of group VII ETHYLENE RESPONSE FACTORs (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilization in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This provides molecular evidence of N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and a substrate of ATE1 in plants. The PCOs and ATE1 may be viable intervention targets to stabilize N-end rule substrates, including ERF-VIIs, to enhance submergence tolerance in agriculture.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cisteína-Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Biocatálisis , Cisteína/metabolismo , Cisteína-Dioxigenasa/genética , Dioxigenasas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo
10.
J Neurosci Methods ; 258: 87-93, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26554517

RESUMEN

BACKGROUND: It is difficult to design a system to reliably deliver volatile anaesthetics such as halothane or isoflurane to in vitro preparations such as tissues or cells cultures: the very volatility of the drugs means that they can rapidly dissipate from even carefully-prepared solutions. Furthermore, many experiments require the control of other gases (such as oxygen or carbon dioxide) which requires constant perfusion. NEW METHOD: We describe a constant perfusion system that is air-tight (i.e., allows the accurate administration of hypoxic or hypercapnic gas mixtures), in which volatile anaesthetic is delivered via calibrated vaporisers by constant bubbling into the perfusing solution (and continuously monitored for stability by infrared spectroscopy in the headspace above the solution). RESULTS: We have confirmed the accuracy (i.e., linear relationship of dissolved concentrations with vapour dial settings) and stability (i.e., over time) of the anaesthetic concentrations in solutions in samples taken from the bottles into which anaesthetic is bubbled, and from samples taken from the tissue perfusion bath, using gas chromatrography-mass spectrometry (GC-MS). CONCLUSIONS: It is possible to deliver volatile anaesthetics in accurate concentrations to cell/tissue preparations whilst adjusting ambient air composition rapidly, stable over sustained time periods.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Perfusión/métodos , Perfusión/instrumentación
11.
ChemMedChem ; 9(3): 566-71, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504543

RESUMEN

The 2-oxoglutarate (2OG)-dependent Jumonji C domain (JmjC) family is the largest family of histone lysine demethylases. There is interest in developing small-molecule probes that modulate JmjC activity to investigate their biological roles. 5-Carboxy-8-hydroxyquinoline (IOX1) is the most potent broad-spectrum inhibitor of 2OG oxygenases, including the JmjC demethylases, reported to date; however, it suffers from low cell permeability. Here, we describe structure-activity relationship studies leading to the discovery of an n-octyl ester form of IOX1 with improved cellular potency (EC50 value of 100 to 4 µM). These findings are supported by in vitro inhibition and selectivity studies, docking studies, activity versus toxicity analysis in cell cultures, and intracellular uptake measurements. The n-octyl ester was found to have improved cell permeability; it was found to inhibit some JmjC demethylases in its intact ester form and to be more selective than IOX1. The n-octyl ester of IOX1 should find utility as a starting point for the development of JmjC inhibitors and as a use as a cell-permeable tool compound for studies investigating the roles of 2OG oxygenases in epigenetic regulation.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ésteres/farmacología , Hidroxiquinolinas/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Ésteres/química , Células HeLa , Humanos , Hidroxiquinolinas/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
12.
Rapid Commun Mass Spectrom ; 21(15): 2491-6, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17610242

RESUMEN

Benzylpyridine and papaverine, an alkyl quinoline, both produce product ions containing an azepinium ring during atmospheric pressure chemical ionisation or electrospray multistage mass spectrometry. By controlling the trapping conditions, an isolated azepinium ion was held within the trap for an extended period of time without excitation. A subsequent analytical scan revealed a mass spectrum containing ions at two mass-to-charge (m/z) ratios, the first at the m/z of the isolated product ion and the second at an m/z ratio corresponding to the adduction of a molecule of solvent. Isolation and resonance excitation of the adduct ion remove the solvent molecule, resulting in recovery of the azepinium ion at the same signal intensity as the adduct ion. Isolating and trapping the ion for a further period allowed the solvent adduct ion to be re-formed. Modulation of the solvent flowing into the source while the ion was trapped allowed variation in the solvent molecule adducted to the trapped ion. The proportion of the ion current due to the adduct ion depends on the nature of the isolated ion, the proton affinity of the solvent and the length of time for which the ion was trapped. Adduct ion formation, deliberately maximised in this study, can occur to a significant extent under standard ion trap operating conditions, reducing the ion current of product ions of interest and, ultimately, the response in tandem mass spectrometric assays.

13.
Rapid Commun Mass Spectrom ; 20(3): 473-80, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16395740

RESUMEN

Two opium alkaloids, noscapine and papaverine, show good response as [M+H]+ ions in positive ion electrospray mass spectrometry and atmospheric pressure chemical ionisation mass spectrometry. The two compounds exhibit markedly different fragmentation pathways and behaviour under multistage mass spectrometry (MSn), with papaverine displaying a wealth of ions in MS2 and noscapine providing a single dominant ion at each stage of MSn prior to MS4. Elucidation of the fragmentation pathways using the MSn capability of the ion trap was aided by spraying the analytes in 2H2O to incorporate an isotopic label. Simplex optimisation allowed optimum trapping and fragmentation parameters to be determined, leading to a six-fold improvement in response for one transition and a seven-fold improvement for one transition sequence.


Asunto(s)
Presión Atmosférica , Deuterio/química , Espectrometría de Masas/métodos , Noscapina/química , Papaverina/química , Deuterio/análisis , Marcaje Isotópico , Estructura Molecular , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA