Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 19(4): 1068-1077, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35226500

RESUMEN

Lipid nanocapsules (LNCs) are increasingly being used for various drug delivery applications due to their versatile nature and ability to carry a wide variety of therapeutic drug molecules. In the present investigation, small-angle X-ray (SAXS) and neutron scattering (SANS) techniques were used to elucidate the structure of LNCs. Overall, size measurements obtained from SAXS and SANS techniques were complemented with dynamic light scattering, zeta potential, and cryogenic transmission electron microscopy measurements. The structural aspects of LNCs can be affected by drug loading and the properties of the drug. Here, the impact of drug loading on the overall structure was evaluated using DF003 as a model drug molecule. LNCs with varying compositions were prepared using a phase inversion method. Combined analysis of SAXS and SANS measurements indicated the presence of a core-shell structure in the LNCs. Further, the drug loading did not alter the overall core-shell structure of the LNCs. SANS data revealed that the core size remained unchanged with a radius of 20.0 ± 0.9 nm for unloaded LNCs and 20.2 ± 0.6 nm for drug-loaded LNCs. Furthermore, interestingly, the shell becomes thicker in an order of ∼1 nm in presence of the drug compared to the shell thickness of unloaded LNCs as demonstrated by SAXS data. This can be correlated with the strong association of hydrophilic DF003 with Kolliphor HS 15, a polyethylene glycol-based surfactant that predominantly makes up the shell, resulting in a drug-rich hydrated shell.


Asunto(s)
Nanocápsulas , Lípidos/química , Nanocápsulas/química , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Biomacromolecules ; 15(10): 3671-8, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25144139

RESUMEN

Factors affecting matrix degradation in protein-loaded microgels were investigated for dextran-based microgels, the sugar-binding protein Concanavalin A (ConA), and the dextran-degrading enzyme Dextranase. For this system, effects of enzyme, protein, and glucose concentrations, as well as pH, were considered. Microgel network degradation was monitored by micromanipulator-assisted light microscopy, whereas enzyme and protein distributions were monitored by confocal microscopy. Results show that Dextranase-mediated microgel degradation increased with increasing enzyme concentration, whereas an increased ConA loading in the dextran microgels caused a concentration-dependent decrease in microgel degradation. In the presence of glucose, competitive release of microgel-bound ConA restored the microgel degradation observed in the absence of ConA. To clarify effects of mass transport limitations, microgel degradation was compared to that of non-cross-linked dextran, demonstrating that ConA limits enzyme substrate access in dextran microgels primarily through pore blocking and induction of pore shrinkage. The experimentally observed effects were qualitatively captured by a modified Michaelis-Menten approach for spherical symmetry, in which network blocking by ConA was included. Taken together, the results demonstrate that matrix degradation of protein-loaded microgels depends sensitively on a number of factors, which need to be considered in the use of microgels in biomedical applications.


Asunto(s)
Concanavalina A/química , Dextranos/química , Geles/química , Glucosa/química , Dextranasa/química , Concentración de Iones de Hidrógeno , Microscopía Confocal/métodos
3.
Int J Pharm ; 602: 120640, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901599

RESUMEN

Lipid nanocapsules (LNCs) were prepared with a novel cyclic GMP analogue, DF003, intended for the treatment of neurodegenerative retinal degenerations. LNCs loaded with DF003 were prepared by a phase inversion method and characterized for particle size, polydispersity index, drug loading, entrapment efficiency, stability, and in vitro drug release. Particle size, PdI and zeta potential of selected optimized formulation were 76 ± 1.2 nm, 0.16 ± 0.02, and -11.6 ± 0.4 mV, respectively, with an entrapment efficiency of 69 ± 0.5%. The selected formulation showed a sustained drug release for up to 6 days in phosphate buffer as well as in vitreous components. Stability evaluation of LNCs in presence of vitreous components demonstrated structural stability and compatibility. Further, the nanoparticle preparation process was upscaled to 1000 times (10 L) of the typical lab scale (0.01 L). Product parameters were observed to be unaffected by the upscaling, demonstrating that the LNCs were of the same quality as those prepared at lab scale. Additionally, the manufacturing process was adapted and assessed for a continuous production of LNCs to leverage it for industrial viability. Overall, these findings reveal the remarkable potential of LNCs as drug delivery vehicles and their possibility for clinical translation.


Asunto(s)
Nanocápsulas , GMP Cíclico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Lípidos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA