Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 18(3): 242-248, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692647

RESUMEN

Doped organic semiconductors typically exhibit a thermal activation of their electrical conductivity, whose physical origin is still under scientific debate. In this study, we disclose relationships between molecular parameters and the thermal activation energy (EA) of the conductivity, revealing that charge transport is controlled by the properties of host-dopant integer charge transfer complexes (ICTCs) in efficiently doped organic semiconductors. At low doping concentrations, charge transport is limited by the Coulomb binding energy of ICTCs, which can be minimized by systematic modification of the charge distribution on the individual ions. The investigation of a wide variety of material systems reveals that static energetic disorder induced by ICTC dipole moments sets a general lower limit for EA at large doping concentrations. The impact of disorder can be reduced by adjusting the ICTC density and the intramolecular relaxation energy of host ions, allowing an increase of conductivity by many orders of magnitude.

2.
Nat Mater ; 13(1): 63-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24240240

RESUMEN

Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.

3.
Sci Rep ; 10(1): 6473, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277093

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 7: 44713, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303924

RESUMEN

In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm-2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm2 V-1 s-1, this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

5.
Adv Mater ; 29(12)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28145601

RESUMEN

A method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results.

6.
ACS Nano ; 11(2): 1559-1571, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28052188

RESUMEN

We report on a simple and effective technique of tuning the colloidal solubility of inorganic-capped CdSe and CdSe/CdS core/shell nanocrystals (NCs) from highly polar to nonpolar media using n-butylamine molecules. The introduction of the short and volatile organic amine mainly results in a modification of the labile diffusion region of the inorganic-capped NCs, enabling a significant extension of their dispersibility and improving the ability to form long-range assemblies. Moreover, the hybrid n-butylamine/inorganic capping can be thermally decomposed under mild heat treatment, making this approach of surface functionalization well-compatible with a low-temperature, solution-processed device fabrication. Particularly, a field-effect transistor-based on n-butylamine/Ga-I-complex-capped 4.5 nm CdSe NC solids shows excellent transport characteristics with electron mobilities up to 2 cm2/(V·s) and a high current modulation value (>104) at a low operation voltage (<2 V).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA