Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Chem ; 69(7): 711-717, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086467

RESUMEN

BACKGROUND: Large ß-globin gene cluster deletions (hereditary persistence of fetal hemoglobin [Hb] or ß-, δß-, γδß-, and ϵγδß-thalassemia), are associated with widely disparate phenotypes, including variable degrees of microcytic anemia and Hb F levels. When present, increased Hb A2 is used as a surrogate marker for ß-thalassemia. Notably, ϵγδß-thalassemias lack the essential regulatory locus control region (LCR) and cause severe transient perinatal anemia but normal newborn screen (NBS) results and Hb A2 levels. Herein, we report a novel deletion of the ϵ, Aγ, Gγ, and ψß loci with intact LCR, δ-, and ß-regions in 2 women and newborn twins. METHODS: Capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), DNA sequencing, multiplex ligation-dependent probe amplification (MLPA), gap-polymerase chain reaction (gap-PCR), and long-read sequencing (LRS) were performed. RESULTS: NBS showed an Hb A > Hb F pattern for both twins. At 20 months, Hb A2 was increased similarly to that in the mother and an unrelated woman. Unexplained microcytosis was absent and the twins lacked severe neonatal anemia. MLPA, LRS, and gap-PCR confirmed a 32 599 base pair deletion of ϵ (HBE1) through ψß (HBBP1) loci. CONCLUSIONS: This deletion represents a hemoglobinopathy category with a distinct phenotype that has not been previously described, an ϵγ-thalassemia. Both the NBS Hb A > F pattern and the subsequent increased Hb A2 without microcytosis are unusual. A similar deletion should be considered when this pattern is encountered and appropriate test methods selected for detection. Knowledge of the clinical impact of this new category will improve genetic counselling, with distinction from the severe transient anemia associated with ϵγδß-thalassemia.


Asunto(s)
Hemoglobinopatías , Talasemia , Talasemia beta , Humanos , Femenino , Talasemia/genética , Talasemia beta/diagnóstico , Talasemia beta/genética , Hemoglobina Fetal/genética , Reacción en Cadena de la Polimerasa Multiplex
2.
Brain ; 144(4): 1082-1088, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33889947

RESUMEN

To examine the length of a hexanucleotide expansion in C9orf72, which represents the most frequent genetic cause of frontotemporal lobar degeneration and motor neuron disease, we employed a targeted amplification-free long-read sequencing technology: No-Amp sequencing. In our cross-sectional study, we assessed cerebellar tissue from 28 well-characterized C9orf72 expansion carriers. We obtained 3507 on-target circular consensus sequencing reads, of which 814 bridged the C9orf72 repeat expansion (23%). Importantly, we observed a significant correlation between expansion sizes obtained using No-Amp sequencing and Southern blotting (P = 5.0 × 10-4). Interestingly, we also detected a significant survival advantage for individuals with smaller expansions (P = 0.004). Additionally, we uncovered that smaller expansions were significantly associated with higher levels of C9orf72 transcripts containing intron 1b (P = 0.003), poly(GP) proteins (P = 1.3 × 10- 5), and poly(GA) proteins (P = 0.005). Thorough examination of the composition of the expansion revealed that its GC content was extremely high (median: 100%) and that it was mainly composed of GGGGCC repeats (median: 96%), suggesting that expanded C9orf72 repeats are quite pure. Taken together, our findings demonstrate that No-Amp sequencing is a powerful tool that enables the discovery of relevant clinicopathological associations, highlighting the important role played by the cerebellar size of the expanded repeat in C9orf72-linked diseases.


Asunto(s)
Proteína C9orf72/genética , Enfermedades Neurodegenerativas/genética , Análisis de Secuencia de ADN/métodos , Anciano , Cerebelo/metabolismo , Estudios Transversales , Expansión de las Repeticiones de ADN/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
BMC Bioinformatics ; 20(1): 557, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703611

RESUMEN

BACKGROUND: Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant calling in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational performance improvements have been introduced in GATK3.8 through collaboration with Intel in 2017. The first release of GATK4 in early 2018 revealed rewrites in the code base, as the stepping stone toward a Spark implementation. As the software continues to be a moving target for optimal deployment in highly productive environments, we present a detailed analysis of these improvements, to help the community stay abreast with changes in performance. RESULTS: We re-evaluated multiple options, such as threading, parallel garbage collection, I/O options and data-level parallelization. Additionally, we considered the trade-offs of using GATK3.8 and GATK4. We found optimized parameter values that reduce the time of executing the best practices variant calling procedure by 29.3% for GATK3.8 and 16.9% for GATK4. Further speedups can be accomplished by splitting data for parallel analysis, resulting in run time of only a few hours on whole human genome sequenced to the depth of 20X, for both versions of GATK. Nonetheless, GATK4 is already much more cost-effective than GATK3.8. Thanks to significant rewrites of the algorithms, the same analysis can be run largely in a single-threaded fashion, allowing users to process multiple samples on the same CPU. CONCLUSIONS: In time-sensitive situations, when a patient has a critical or rapidly developing condition, it is useful to minimize the time to process a single sample. In such cases we recommend using GATK3.8 by splitting the sample into chunks and computing across multiple nodes. The resultant walltime will be nnn.4 hours at the cost of $41.60 on 4 c5.18xlarge instances of Amazon Cloud. For cost-effectiveness of routine analyses or for large population studies, it is useful to maximize the number of samples processed per unit time. Thus we recommend GATK4, running multiple samples on one node. The total walltime will be ∼34.1 hours on 40 samples, with 1.18 samples processed per hour at the cost of $2.60 per sample on c5.18xlarge instance of Amazon Cloud.


Asunto(s)
Genómica/métodos , Programas Informáticos , Algoritmos , Cromosomas Humanos/genética , Genoma Humano , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
4.
BMC Bioinformatics ; 20(1): 722, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847808

RESUMEN

Following publication of the original article [1], the author explained that Table 2 is displayed incorrectly. The correct Table 2 is given below. The original article has been corrected.

5.
J Clin Immunol ; 38(3): 307-319, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29671115

RESUMEN

PURPOSE: We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative. We sought to determine the cause of the immunodeficiency in this infant. METHODS: We performed whole-exome sequencing (WES) on the patient and parents to identify a genetic diagnosis. Based on the WES result, we developed a novel flow cytometric panel for rapid assessment of DNA repair defects using blood samples. We also performed whole transcriptome sequencing (WTS) on fibroblast RNA from the patient and father for abnormal transcript analysis. RESULTS: WES revealed a pathogenic paternally inherited indel in ATM. We used the flow panel to assess several proteins in the DNA repair pathway in lymphocyte subsets. The patient had absent phosphorylation of ATM, resulting in absent or aberrant phosphorylation of downstream proteins, including γH2AX. However, ataxia-telangiectasia (AT) is an autosomal recessive condition, and the abnormal functional data did not correspond with a single ATM variant. WTS revealed in-frame reciprocal fusion transcripts involving ATM and SLC35F2 indicating a chromosome 11 inversion within 11q22.3, of maternal origin. Inversion breakpoints were identified within ATM intron 16 and SLC35F2 intron 7. CONCLUSIONS: We identified a novel ATM-breaking chromosome 11 inversion in trans with a pathogenic indel (compound heterozygote) resulting in non-functional ATM protein, consistent with a diagnosis of AT. Utilization of several molecular and functional assays allowed successful resolution of this case.


Asunto(s)
Genómica , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/metabolismo , Proteómica , Biomarcadores , Biología Computacional/métodos , ADN , Femenino , Perfilación de la Expresión Génica , Variación Genética , Genómica/métodos , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Inmunofenotipificación , Lactante , Proteínas , Proteómica/métodos , ARN , Secuenciación del Exoma
6.
Muscle Nerve ; 57(4): 679-683, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28881388

RESUMEN

INTRODUCTION: A calpain-3 (CAPN3) gene heterozygous deletion (c.643_663del21) was recently linked to autosomal dominant (AD) limb-girdle muscular dystrophy. However, the possibility of digenic disease was raised. We describe 3 families with AD calpainopathy carrying this isolated mutation. METHODS: Probands heterozygous for CAPN3 c.643_663del21 were identified by targeted next generation or whole exome sequencing. Clinical findings were collected for probands and families. Calpain-3 muscle Western blots were performed in 3 unrelated individuals. RESULTS: Probands reported variable weakness in their 40s or 50s, with myalgia, back pain, or hyperlordosis. Pelvic girdle muscles were affected with adductor and hamstring sparing. Creatine kinase was normal to 1,800 U/L, independent of weakness severity. Imaging demonstrated lumbar paraspinal muscle atrophy. Electromyographic findings and muscle biopsies were normal to mildly myopathic. Muscle calpain-3 expression was reduced. DISCUSSION: This study provides further evidence for AD calpainopathy associated with CAPN3 c.643_663del21. No pathogenic variants in other genes known to cause myopathy were detected. Muscle Nerve 57: 679-683, 2018.


Asunto(s)
Calpaína/genética , Proteínas Musculares/genética , Debilidad Muscular/fisiopatología , Atrofia Muscular/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Músculos Paraespinales/diagnóstico por imagen , Adulto , Anciano , Calpaína/metabolismo , Creatina Quinasa/metabolismo , Análisis Mutacional de ADN , Electromiografía , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Debilidad Muscular/etiología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Distrofia Muscular de Cinturas/complicaciones , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/fisiopatología , Mutación , Linaje , Análisis de Secuencia de ADN , Eliminación de Secuencia
7.
J Biol Chem ; 290(10): 5979-90, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25593321

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Distrofia Endotelial de Fuchs/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Expansión de Repetición de Trinucleótido/genética , Córnea/metabolismo , Córnea/patología , Distrofia Endotelial de Fuchs/patología , Humanos , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Factor de Transcripción 4
8.
Hum Mol Genet ; 23(21): 5793-804, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24925317

RESUMEN

Locus mapping has uncovered diverse etiologies for familial atrial fibrillation (AF), dilated cardiomyopathy (DCM), and mixed cardiac phenotype syndromes, yet the molecular basis for these disorders remains idiopathic in most cases. Whole-exome sequencing (WES) provides a powerful new tool for familial disease gene discovery. Here, synergistic application of these genomic strategies identified the pathogenic mutation in a familial syndrome of atrial tachyarrhythmia, conduction system disease (CSD), and DCM vulnerability. Seven members of a three-generation family exhibited the variably expressed phenotype, three of whom manifested CSD and clinically significant arrhythmia in childhood. Genome-wide linkage analysis mapped two equally plausible loci to chromosomes 1p3 and 13q12. Variants from WES of two affected cousins were filtered for rare, predicted-deleterious, positional variants, revealing an unreported heterozygous missense mutation disrupting the highly conserved kinase domain in TNNI3K. The G526D substitution in troponin I interacting kinase, with the most deleterious SIFT and Polyphen2 scores possible, resulted in abnormal peptide aggregation in vitro and in silico docking models predicted altered yet energetically favorable wild-type mutant dimerization. Ventricular tissue from a mutation carrier displayed histopathological hallmarks of DCM and reduced TNNI3K protein staining with unique amorphous nuclear and sarcoplasmic inclusions. In conclusion, mutation of TNNI3K, encoding a heart-specific kinase previously shown to modulate cardiac conduction and myocardial function in mice, underlies a familial syndrome of electrical and myopathic heart disease. The identified substitution causes a TNNI3K aggregation defect and protein deficiency, implicating a dominant-negative loss of function disease mechanism.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatía Dilatada/genética , Estudios de Asociación Genética , Sistema de Conducción Cardíaco/anomalías , Quinasas Quinasa Quinasa PAM/genética , Mutación , Taquicardia Atrial Ectópica/genética , Adulto , Secuencia de Aminoácidos , Arritmias Cardíacas/diagnóstico , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/metabolismo , Niño , Mapeo Cromosómico , Cromosomas Humanos Par 1 , Secuencia Conservada , Exoma , Femenino , Sitios Genéticos , Variación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Compuestos Orgánicos , Linaje , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Alineación de Secuencia , Síndrome , Taquicardia Atrial Ectópica/diagnóstico
9.
J Med Genet ; 52(1): 10-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25371537

RESUMEN

Whole exome sequencing (WES) provides an unprecedented opportunity to identify the potential aetiological role of rare functional variants in human complex diseases. Large-scale collaborations have generated germline WES data on patients with a number of diseases, especially cancer, but less often on healthy controls under the same sequencing procedures. These data can be a valuable resource for identifying new disease susceptibility loci if study designs are appropriately applied. This review describes suggested strategies and technical considerations when focusing on case-only study designs that use WES data in complex disease scenarios. These include variant filtering based on frequency and functionality, gene prioritisation, interrogation of different data types and targeted sequencing validation. We propose that if case-only WES designs were applied in an appropriate manner, new susceptibility genes containing rare variants for human complex diseases can be detected.


Asunto(s)
Exoma/genética , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Fenotipo , Proyectos de Investigación , Análisis de Secuencia de ADN/métodos , Humanos
10.
Nucleic Acids Res ; 42(15): 9602-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25081206

RESUMEN

Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.


Asunto(s)
Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Línea Celular Tumoral , Genoma Humano , Humanos , Neoplasias Pulmonares/genética , Nucleósido Difosfato Quinasas NM23/metabolismo
11.
Breast Cancer Res Treat ; 153(2): 435-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296701

RESUMEN

When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Exoma , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Genes BRCA1 , Genes BRCA2 , Genes p53 , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Invasividad Neoplásica , Estadificación de Neoplasias , Adulto Joven
12.
PLoS Comput Biol ; 10(1): e1003440, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453961

RESUMEN

Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp.


Asunto(s)
Biología Computacional/métodos , Enfermedades Genéticas Congénitas/genética , Mutación , Polimorfismo de Nucleótido Simple , Algoritmos , Simulación por Computador , Bases de Datos de Proteínas , Variación Genética , Genoma Humano , Humanos , Internet , Filogenia , Programas Informáticos
13.
Am J Med Genet C Semin Med Genet ; 166C(1): 15-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24616301

RESUMEN

There is increasing recognition that genomic medicine as part of individualized medicine has a defined role in patient care. Rapid advances in technology and decreasing cost combine to bring genomic medicine closer to the clinical practice. There is also growing evidence that genomic-based medicine can advance patient outcomes, tailor therapy and decrease side effects. However the challenges to integrate genomics into the workflow involved in patient care remain vast, stalling assimilation of genomic medicine into mainstream medical practice. In this review we describe the approach taken by one institution to further individualize medicine by offering, executing and interpreting whole exome sequencing on a clinical basis through an enterprise-wide, standalone individualized medicine clinic. We present our experience designing and executing such an individualized medicine clinic, sharing lessons learned and describing early implementation outcomes.


Asunto(s)
Instituciones de Atención Ambulatoria/organización & administración , Exoma/genética , Genética Médica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pautas de la Práctica en Medicina/tendencias , Medicina de Precisión/métodos , Instituciones de Atención Ambulatoria/tendencias , Discusiones Bioéticas , Biología Computacional/métodos , Asesoramiento Genético/métodos , Genética Médica/tendencias , Humanos , Medicina de Precisión/tendencias
14.
Am J Med Genet A ; 164A(9): 2356-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24888332

RESUMEN

Hartsfield syndrome has been recently reported to be associated with mutations in FGFR1 however, to this date; no familial cases have been reported. In this report, we describe two siblings with Hartsfield syndrome and a novel de novo FGFR1 mutation suggesting gonadal mosaicism. The proband presented at our institution at age 6 years with a clinical diagnosis of Hartsfield syndrome and requesting further genetic evaluation. Previous studies included a normal karyotype, oligonucleotide array, and single gene testing for nonsyndromic holoprosencephaly (SHH, SIX3, ZIC2, TGIF). At the age of 6 years, exome sequencing was performed and a de novo novel missense variant was identified in FGFR1 (coding for fibroblast growth factor-1) on chromosome 8p12: c.1880G>C (p.R627T). Subsequently, a younger sibling was born with the same phenotype (holoprosencephaly, ectrodactyly of bilateral hands and feet and bilateral cleft lip and palate). Targeted sequencing of FGFR1 revealed the identical variant that was previously identified in the proband. To our knowledge this observation is the first documentation of familial recurrence of Hartsfield syndrome. As both parents were negative for the sequence variant in FGFR1 gene by testing peripheral blood samples, this suggests gonadal mosaicism. The frequency of gonadal mosaicism in Hartsfield syndrome is not known however given our case, this possibility should be taken in to consideration for recurrence risk estimation in children of clinically unaffected parents.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Dedos/anomalías , Gónadas/patología , Deformidades Congénitas de la Mano/genética , Holoprosencefalia/genética , Discapacidad Intelectual/genética , Mosaicismo , Mutación/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Hermanos , Adulto , Niño , Facies , Heterocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Microcefalia/patología
15.
Pharmacogenet Genomics ; 23(3): 156-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23324805

RESUMEN

OBJECTIVES: FKBP51 (51 kDa immunophilin) acts as a modulator of the glucocorticoid receptor and a negative regulator of the Akt pathway. Genetic variation in FKBP5 plays a role in antidepressant response. The aim of this study was to comprehensively assess the role of genetic variation in FKBP5, identified by both Sanger and Next Generation DNA resequencing, as well as genome-wide single nucleotide polymorphisms (SNPs) associated with FKBP5 expression in the response to the selective serotonin reuptake inhibitor (SSRI) treatment of major depressive disorder. METHODS: We identified 657 SNPs in FKBP5 by Next Generation sequencing of 96 DNA samples from white patients, and 149 SNPs were selected for the genotyping together with 235 SNPs that were trans-associated with variation in FKBP5 expression in lymphoblastoid cells. A total of 529 DNA samples from the Mayo Clinic PGRN-SSRI Pharmacogenomic trial for which genome-wide SNPs had already been obtained were genotyped for these 384 SNPs, and associations with treatment outcomes were determined. The most significant SNPs were genotyped using 96 DNA samples from white non-Hispanic patients of the NIMH-supported Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study to attempt replication, followed by functional genomic studies. RESULTS: Genotype-phenotype association analysis indicated that rs352428 was associated with both 8-week treatment response in the Mayo study (odds ratio=0.49; P=0.003) and 6-week response in the STAR*D replication study (odds ratio=0.74; P=0.05). The electrophoresis mobility shift assay and the reporter gene assay confirmed the possible role of this SNP in transcription regulation. CONCLUSION: This comprehensive FKBP5 sequence study provides insight into the role of common genetic polymorphisms that might influence SSRI treatment outcomes in major depressive disorder patients.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Variación Genética , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Proteínas de Unión a Tacrolimus/genética , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Humanos , Mutagénesis Sitio-Dirigida , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Resultado del Tratamiento
16.
Blood ; 117(3): 915-9, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21030553

RESUMEN

The genetics of peripheral T-cell lymphomas are poorly understood. The most well-characterized abnormalities are translocations involving ALK, occurring in approximately half of anaplastic large cell lymphomas (ALCLs). To gain insight into the genetics of ALCLs lacking ALK translocations, we combined mate-pair DNA library construction, massively parallel ("Next Generation") sequencing, and a novel bioinformatic algorithm. We identified a balanced translocation disrupting the DUSP22 phosphatase gene on 6p25.3 and adjoining the FRA7H fragile site on 7q32.3 in a systemic ALK-negative ALCL. Using fluorescence in situ hybridization, we demonstrated that the t(6;7)(p25.3;q32.3) was recurrent in ALK-negative ALCLs. Furthermore, t(6;7)(p25.3;q32.3) was associated with down-regulation of DUSP22 and up-regulation of MIR29 microRNAs on 7q32.3. These findings represent the first recurrent translocation reported in ALK-negative ALCL and highlight the utility of massively parallel genomic sequencing to discover novel translocations in lymphoma and other cancers.


Asunto(s)
Cromosomas Humanos Par 6/genética , Cromosomas Humanos Par 7/genética , Linfoma Anaplásico de Células Grandes/genética , Translocación Genética , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico , Secuencia de Bases , Rotura Cromosómica , Puntos de Rotura del Cromosoma , Fosfatasas de Especificidad Dual/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Linfoma Anaplásico de Células Grandes/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras , Análisis de Secuencia de ADN/métodos
17.
medRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35923324

RESUMEN

SARS-CoV-2 has had an unprecedented impact on human health and highlights the need for genomic epidemiology studies to increase our understanding of virus evolution and spread, and to inform policy decisions. We sequenced viral genomes from over 22,000 patient samples tested at Mayo Clinic Laboratories between 2020-2022 and use Bayesian phylodynamics to describe county and regional spread in Minnesota. The earliest introduction into Minnesota was to Hennepin County from a domestic source around January 22, 2020; six weeks before the first confirmed case in the state. This led to the virus spreading to Northern Minnesota, and eventually, the rest of the state. International introductions were most abundant in Hennepin (home to the Minneapolis/St. Paul International (MSP) airport) totaling 45 (out of 107) over the two-year period. Southern Minnesota counties were most common for domestic introductions with 19 (out of 64), potentially driven by bordering states such as Iowa and Wisconsin as well as Illinois which is nearby. Hennepin also was, by far, the most dominant source of in-state transmissions to other Minnesota locations (n=772) over the two-year period. We also analyzed the diversity of the location source of SARS-CoV-2 viruses in each county and noted the timing of state-wide policies as well as trends in clinical cases. Neither the number of clinical cases or major policy decisions, such as the end of the lockdown period in 2020 or the end of all restrictions in 2021, appeared to have impact on virus diversity across each individual county.

18.
mSphere ; 8(6): e0023223, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37882516

RESUMEN

IMPORTANCE: We analyzed over 22,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes of patient samples tested at Mayo Clinic Laboratories during a 2-year period in the COVID-19 pandemic, which included Alpha, Delta, and Omicron variants of concern to examine the roles and relationships of Minnesota virus transmission. We found that Hennepin County, the most populous county, drove the transmission of SARS-CoV-2 viruses in the state after including the formation of earlier clades including 20A, 20C, and 20G, as well as variants of concern Alpha and Delta. We also found that Hennepin County was the source for most of the county-to-county introductions after an initial predicted introduction with the virus in early 2020 from an international source, while other counties acted as transmission "sinks." In addition, major policies, such as the end of the lockdown period in 2020 or the end of all restrictions in 2021, did not appear to have an impact on virus diversity across individual counties.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Minnesota/epidemiología , Pandemias , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Genómica
19.
J Neurochem ; 120(6): 881-90, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22220685

RESUMEN

Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a ß-carbon from serine to tetrahydrofolate to form glycine and 5,10-methylene-tetrahydrofolate. This reaction plays an important role in neurotransmitter synthesis and metabolism. We set out to resequence SHMT1 and SHMT2, followed by functional genomic studies. We identified 87 and 60 polymorphisms in SHMT1 and SHMT2, respectively. We observed no significant functional effect of the 13 non-synonymous single-nucleotide polymorphism (SNPs) in these genes, either on catalytic activity or protein quantity. We imputed additional variants across the two genes using '1000 Genomes' data, and identified 14 variants that were significantly associated (p<1.0E-10) with SHMT1 messenger RNA expression in lymphoblastoid cell lines. Many of these SNPs were also significantly correlated with basal SHMT1 protein expression in 268 human liver biopsy samples. Reporter gene assays suggested that the SHMT1 promoter SNP, rs669340, contributed to this variation. Finally, SHMT1 and SHMT2 expression were significantly correlated with those of other Folate and Methionine Cycle genes at both the messenger RNA and protein levels. These experiments represent a comprehensive study of SHMT1 and SHMT2 gene sequence variation and its functional implications. In addition, we obtained preliminary indications that these genes may be co-regulated with other Folate and Methionine Cycle genes.


Asunto(s)
Variación Genética/genética , Genómica/métodos , Glicina Hidroximetiltransferasa/clasificación , Glicina Hidroximetiltransferasa/genética , Adulto , Animales , Pueblo Asiatico/genética , Población Negra/genética , Células COS , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Chlorocebus aethiops , Femenino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Expresión Génica/genética , Genoma , Genotipo , Glicina Hidroximetiltransferasa/metabolismo , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/metabolismo , Humanos , Desequilibrio de Ligamiento , Hígado/metabolismo , Linfocitos/citología , Masculino , Metionina/genética , Metionina/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Polimorfismo de Nucleótido Simple , ARN Mensajero , Análisis de Secuencia de ADN , Estadística como Asunto , Transfección , Población Blanca/genética
20.
Pharmacogenet Genomics ; 22(2): 105-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22173087

RESUMEN

BACKGROUND AND OBJECTIVE: Gemcitabine is widely used to treat non-small cell lung cancer (NSCLC). The aim of this study was to assess the pharmacogenomic effects of the entire gemcitabine metabolic pathway, we genotyped single nucleotide polymorphisms (SNPs) within the 17 pathway genes using DNA samples from patients with NSCLC treated with gemcitabine to determine the effect of genetic variants within gemcitabine pathway genes on overall survival (OS) of patients with NSCLC after treatment of gemcitabine. METHODS: Eight of the 17 pathway genes were resequenced with DNA samples from Coriell lymphoblastoid cell lines (LCLs) using Sanger sequencing for all exons, exon-intron junctions, and 5'-, 3'-UTRs. A total of 107 tagging SNPs were selected on the basis of the resequencing data for the eight genes and on HapMap data for the remaining nine genes, followed by successful genotyping of 394 NSCLC patient DNA samples. Association of SNPs/haplotypes with OS was performed using the Cox regression model, followed by functional studies performed with LCLs and NSCLC cell lines. RESULTS: Five SNPs in four genes (CDA, NT5C2, RRM1, and SLC29A1) showed associations with OS of those patients with NSCLC, as well as nine haplotypes in four genes (RRM1, RRM2, SLC28A3, and SLC29A1) with a P value of less than 0.05. Genotype imputation using the LCLs was performed for a region of 200 kb surrounding those SNPs, followed by association studies with gemcitabine cytotoxicity. Functional studies demonstrated that downregulation of SLC29A1, NT5C2, and RRM1 in NSCLC cell lines altered cell susceptibility to gemcitabine. CONCLUSION: These studies help in identifying biomarkers to predict gemcitabine response in NSCLC, a step toward the individualized chemotherapy of lung cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Polimorfismo Genético , Transducción de Señal/genética , Antimetabolitos Antineoplásicos/uso terapéutico , Biomarcadores/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Genotipo , Proyecto Mapa de Haplotipos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA