Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 554(7693): 519-522, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443966

RESUMEN

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments-at maximum by a factor of 33 over 50 years-as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Bosques , Mapeo Geográfico , Árboles/crecimiento & desarrollo , Clima Tropical , Biomasa , Imágenes Satelitales
2.
Oecologia ; 203(1-2): 151-165, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794240

RESUMEN

Although it is well recognized that the strength of plant-herbivore interactions can vary with the plant sex, the distance, and the density of conspecific neighbors, no study has yet assessed their combined influence. Here, we filled this knowledge gap by focusing on the dioecious palm Chamaerops humilis L., and its two main herbivores, the invasive moth Paysandisia archon Burmeister and the feral goat Capra hircus L. We evaluated levels and spatial patterns of herbivory, as well as those of plant size and number of inflorescences in two palm populations in Mallorca (Balearic Islands, Spain). Our spatial point pattern analyses revealed that palms not affected by moth herbivory or goat florivory were spatially aggregated, goats fed more strongly upon inflorescences in palms with more neighbors, but they consumed more leaves in isolated palms. Interestingly, we could reveal for the first time that plant sex is a key plant trait modulating neighborhood effects. For instance, whereas aggregated female palms experienced lower intensity of goat florivory than isolated ones, male palms showed the opposite pattern. Palm size and number of inflorescences also showed sex-related differences, suggesting that sexual dimorphism is a key driver of the observed neighborhood effects on herbivory. Our study highlights the importance of considering relevant plant traits such as sex when investigating plant neighborhood effects, calling for further research to fully understand the dynamics governing plant-herbivore interactions in dioecious systems.


Asunto(s)
Arecaceae , Mariposas Nocturnas , Animales , Herbivoria , Hojas de la Planta , Cabras , Características del Vecindario
3.
Ecol Lett ; 24(7): 1474-1486, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33945663

RESUMEN

Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.


Asunto(s)
Ecosistema , Proyectos de Investigación
4.
Ecology ; 100(3): e02591, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30582633

RESUMEN

Environmental filtering and dispersal limitation can both maintain diversity in plant communities by aggregating conspecifics, but parsing the contribution of each process has proven difficult empirically. Here, we assess the contribution of filtering and dispersal limitation to the spatial aggregation patterns of 456 tree species in a hyperdiverse Amazonian forest and find distinct functional trait correlates of interspecific variation in these processes. Spatial point process model analysis revealed that both mechanisms are important drivers of intraspecific aggregation for the majority of species. Leaf drought tolerance was correlated with species topographic distributions in this aseasonal rainforest, showing that future increases in drought severity could significantly impact community structure. In addition, seed mass was associated with the spatial scale and density of dispersal-related aggregation. Taken together, these results suggest environmental filtering and dispersal limitation act in concert to influence the spatial and functional structure of diverse forest communities.


Asunto(s)
Bosques , Árboles , Fenotipo , Hojas de la Planta , Bosque Lluvioso , Clima Tropical
5.
Proc Natl Acad Sci U S A ; 113(13): 3551-6, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976567

RESUMEN

Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.


Asunto(s)
Pradera , Modelos Biológicos , Desarrollo de la Planta , Poaceae/crecimiento & desarrollo , Biomasa , Retroalimentación Fisiológica , Namibia , Lluvia , Australia Occidental
6.
Ann Bot ; 121(3): 471-482, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29300822

RESUMEN

Background and Aims: Nursery pollination is a highly specialized interaction in which pollinators breed inside plant reproductive structures. Pollinator occupancy of host plants often depends on plant location, flowering synchrony and sex. The nursery pollination system between the dioecious dwarf palm Chamaerops humilis (Arecaceae) and the host-specific palm flower weevil Derelomus chamaeropsis was investigated. For the first time, sex, flowering synchrony and spatial distribution of plants was related to the occupancy probability and the abundance of D. chamaeropsis larvae, important traits influencing both pollinator and plant fitness. Methods: During the flowering season, all inflorescences in anthesis were counted every 12 d and a flowering synchrony index was calculated taking into account all possible correlations with generalized linear mixed models. To analyse the spatial structure of plants, larva occupancy and abundance, different techniques of spatial point pattern analysis were used. Key results: In total, 5986 larvae in 1063 C. humilis inflorescences were recorded over three consecutive seasons. Male inflorescences showed a higher presence and abundance of weevil larvae than females, but interestingly approx. 30 % of the females held larvae. Also, larvae occurred mainly in highly synchronous plants with a low number of inflorescences, perhaps because those plants did not lead to a resource dilution effect. There was no evidence of spatial patterns in larva occupancy or abundance at any spatial scale, suggesting high dispersal ability of adult weevil. Conclusions: The results in a nursery-pollinated dioecious palm demonstrate that plant sex, flowering display and flowering synchrony act as additive forces influencing the presence and abundance of the specialized pollinator larvae. Contradicting previous results, clear evidence that female dwarf palms also provide rewarding oviposition sites was found, and thus the plant 'pays' for the pollination services. The findings highlight that plant local aggregation is not always the main determinant of pollinator attraction, whereas flower traits and phenology could be critical in specialized plant-pollinator interactions.


Asunto(s)
Arecaceae/fisiología , Flores , Polinización , Gorgojos , Animales , Arecaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Flores/fisiología , Larva , Estaciones del Año , Análisis Espacio-Temporal , Gorgojos/fisiología
7.
Proc Natl Acad Sci U S A ; 112(49): 15125-9, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598678

RESUMEN

The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.


Asunto(s)
Bosques , Clima Tropical
8.
Ecol Lett ; 20(11): 1469-1478, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28980377

RESUMEN

Negative distance dependence (NDisD), or reduced recruitment near adult conspecifics, is thought to explain the astounding diversity of tropical forests. While many studies show greater mortality at near vs. far distances from adults, these studies do not seek to track changes in the peak seedling curve over time, thus limiting our ability to link NDisD to coexistence. Using census data collected over 12 years from central Panama in conjunction with spatial mark-connection functions, we show evidence for NDisD for many species, and find that the peak seedling curve shifts away from conspecific adults over time. We find wide variation in the strength of NDisD, which was correlated with seed size and canopy position, but other life-history traits showed no relationship with variation in NDisD mortality. Our results document shifts in peak seedling densities over time, thus providing evidence for the hypothesized spacing mechanism necessary for diversity maintenance in tropical forests.


Asunto(s)
Biodiversidad , Bosques , Plantones/fisiología , Árboles/fisiología , Modelos Biológicos , Panamá , Densidad de Población , Dinámica Poblacional , Plantones/crecimiento & desarrollo , Clima Tropical
9.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28931739

RESUMEN

Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m2). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers. We find that processes not included in classical neutral theory are needed to explain these fundamental patterns of the observed local forest dynamics. We identified a large spatio-temporal variability in the local number of recruits as the main missing mechanism, whereas variability of mortality rates contributed to a lesser extent. We also found that local tree numbers stabilize at typical values which can be explained by a simple analytical model. Our study emphasized the importance of spatio-temporal variability in recruitment beyond demographic stochasticity for explaining the local heterogeneity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Árboles/clasificación , Clima Tropical , Modelos Biológicos , Análisis Espacio-Temporal
10.
J Anim Ecol ; 86(4): 800-811, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28493450

RESUMEN

Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are most flexible in switching to other fruit resources across seasons. The high flexibility of functionally specialised bird species to switch seasonally to other resources challenges the view that consumer species rely on functionally similar resources throughout the year. This flexibility of consumer species may be an important, but widely neglected mechanism that could potentially stabilise consumer-resource networks in response to human disturbance and environmental change.


Asunto(s)
Aves , Conducta Alimentaria , Frutas , Animales , Ecosistema , Filogenia , Estaciones del Año
11.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27903871

RESUMEN

Understanding what factors drive fluctuations in the abundance of endangered species is a difficult ecological problem but a major requirement to attain effective management and conservation success. The ecological traits of large mammals make this task even more complicated, calling for integrative approaches. We develop a framework combining individual-based modelling and statistical inference to assess alternative hypotheses on brown bear dynamics in the Cantabrian range (Iberian Peninsula). Models including the effect of environmental factors on mortality rates were able to reproduce three decades of variation in the number of females with cubs of the year (Fcoy), including the decline that put the population close to extinction in the mid-nineties, and the following increase in brown bear numbers. This external effect prevailed over density-dependent mechanisms (sexually selected infanticide and female reproductive suppression), with a major impact of climate driven changes in resource availability and a secondary role of changes in human pressure. Predicted changes in population structure revealed a nonlinear relationship between total abundance and the number of Fcoy, highlighting the risk of simple projections based on indirect abundance indices. This study demonstrates the advantages of integrative, mechanistic approaches and provides a widely applicable framework to improve our understanding of wildlife dynamics.


Asunto(s)
Especies en Peligro de Extinción , Ambiente , Reproducción , Ursidae , Animales , Conservación de los Recursos Naturales , Femenino , Densidad de Población , Dinámica Poblacional , España
12.
New Phytol ; 211(1): 255-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26876007

RESUMEN

In plant species that critically rely on mycorrhizal symbionts for germination and seedling establishment, distance-dependent decline of mycorrhizal fungi in the soil can be hypothesized to lead to significant spatial clustering as a result of nonrandom spatial patterns of seedling establishment. To test this hypothesis, we investigated the abundance and distribution of mycorrhizal fungi in the soil and how they relate to spatial patterns of adults and seedling recruitment in two related orchid species. We combined assessments of spatial variation in fungal abundance using quantitative PCR (qPCR) with spatial point pattern analyses based on long-term demographic data and cluster point process models. qPCR analyses showed that fungal abundance declined rapidly with distance from the adult host plants. Spatial point pattern analyses showed that successful recruitment in both species was clustered significantly around adult plants and that the decline in the neighborhood density of recruits around adults coincided with the decline of fungal abundance around adult plants. Overall, these results indicate that the distribution and abundance of fungal associates in the soil may have a strong impact on the aboveground distribution of its partner.


Asunto(s)
Micorrizas/fisiología , Orchidaceae/crecimiento & desarrollo , Orchidaceae/microbiología , Plantones/crecimiento & desarrollo , Microbiología del Suelo , Bélgica , Micorrizas/genética , Raíces de Plantas/microbiología
13.
Ecology ; 97(2): 347-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145610

RESUMEN

Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it does in species poorer forests. These findings represent an important step towards understanding the factors that govern the spatial configuration of local biotic communities. The stochastic dilution effect is a simple geometric mechanism that can explain why species' spatial distributions in species-rich communities approximate independence from their biotic neighborhood, even if deterministic niche processes are in effect.


Asunto(s)
Biodiversidad , Bosques , Modelos Biológicos , Filogenia , Procesos Estocásticos
14.
Glob Ecol Biogeogr ; 25(5): 575-585, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27667967

RESUMEN

AIM: It has been recently suggested that different 'unified theories of biodiversity and biogeography' can be characterized by three common 'minimal sufficient rules': (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. LOCATION: Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. METHODS: We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. RESULTS: Species-specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species-specific dispersal correctly predicted the species-area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co-occurrence index of all abundant species pairs. These results were consistent over the two forest plots. MAIN CONCLUSIONS: The three 'minimal sufficient' rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most likely violated in many forests due to shared or distinct habitat preferences. Furthermore, our results highlight missing knowledge about the relationship between species abundances and their aggregation.

15.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25631991

RESUMEN

Assessing the relative importance of different processes that determine the spatial distribution of species and the dynamics in highly diverse plant communities remains a challenging question in ecology. Previous modelling approaches often focused on single aggregated forest diversity patterns that convey limited information on the underlying dynamic processes. Here, we use recent advances in inference for stochastic simulation models to evaluate the ability of a spatially explicit and spatially continuous neutral model to quantitatively predict six spatial and non-spatial patterns observed at the 50 ha tropical forest plot on Barro Colorado Island, Panama. The patterns capture different aspects of forest dynamics and biodiversity structure, such as annual mortality rate, species richness, species abundance distribution, beta-diversity and the species-area relationship (SAR). The model correctly predicted each pattern independently and up to five patterns simultaneously. However, the model was unable to match the SAR and beta-diversity simultaneously. Our study moves previous theory towards a dynamic spatial theory of biodiversity and demonstrates the value of spatial data to identify ecological processes. This opens up new avenues to evaluate the consequences of additional process for community assembly and dynamics.


Asunto(s)
Biodiversidad , Bosques , Árboles/fisiología , Modelos Biológicos , Panamá , Dinámica Poblacional , Clima Tropical
16.
Ecology ; 96(7): 1823-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26378305

RESUMEN

Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each plant by deterministic fitness and niche differences, the large variability of competitors causes also a large variability in the outcomes of interactions and does not allow for strong directed responses at the species level. Collectively, our results highlight the critical effect of the stochastic geometry of biodiversity in structuring local spatial patterns of tropical forest diversity.


Asunto(s)
Biodiversidad , Bosques , Árboles/fisiología , Dinámica Poblacional , Especificidad de la Especie , Sri Lanka
17.
Ecology ; 96(4): 1062-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26230026

RESUMEN

Although trait information has been widely used to explore underlying mechanisms of forest community structure, most studies have focused on local patterns of phylogenetic or functional alpha diversity. Investigations of functional beta diversity, on the other hand, have not been conducted at local scales in a spatially explicit way. In this study, we provide a powerful methodology based on recent advances in spatial point pattern analysis using fully mapped data of large and small trees in two large temperate forest plots. This approach allowed us to assess the relative importance of different ecological processes and mechanisms for explaining patterns of local phylogenetic and functional beta diversity. For both forests and size classes, we found a clear hierarchy of scales: habitat filtering accounted for patterns of phylogenetic and functional beta diversity at larger distances (150-250 m), dispersal limitation accounted for the observed decline in beta diversity at distances below 150 m, and species interactions explained small departures from functional and phylogenetic beta diversity at the immediate plant-neighborhood scale (below 20 m). Thus, both habitat filtering and dispersal limitation influenced the observed patterns in phylogenetic and functional beta diversity at local scales. This result contrasts with a previous study from the same forests, where dispersal limitation alone approximated the observed species beta diversity for distances up to 250 m. In addition, species interactions were relatively unimportant for predicting phylogenetic and functional beta diversity. Our analysis suggests that phylogenetic and functional beta diversity can provide insights into the mechanisms of local community assembly that are missed by studies focusing exclusively on species beta diversity.


Asunto(s)
Biodiversidad , Clima , Bosques , Filogenia , Demografía , Modelos Biológicos , Especificidad de la Especie , Wisconsin
18.
Proc Biol Sci ; 281(1790)2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25030984

RESUMEN

The spatial placement of recruits around adult conspecifics represents the accumulated outcome of several pattern-forming processes and mechanisms such as primary and secondary seed dispersal, habitat associations or Janzen-Connell effects. Studying the adult-recruit relationship should therefore allow the derivation of specific hypotheses on the processes shaping population and community dynamics. We analysed adult-recruit associations for 65 tree species taken from six censuses of the 50 ha neotropical forest plot on Barro Colorado Island (BCI), Panama. We used point pattern analysis to test, at a range of neighbourhood scales, for spatial independence between recruits and adults, to assess the strength and type of departure from independence, and its relationship with species properties. Positive associations expected to prevail due to dispersal limitation occurred only in 16% of all cases; instead a majority of species showed spatial independence (≈73%). Independence described the placement of recruits around conspecific adults in good approximation, although we found weak and noisy signals of species properties related to seed dispersal. We hypothesize that spatial mechanisms with strong stochastic components such as animal seed dispersal overpower the pattern-forming effects of dispersal limitation, density dependence and habitat association, or that some of the pattern-forming processes cancel out each other.


Asunto(s)
Dispersión de Semillas/fisiología , Plantones/fisiología , Árboles/fisiología , Ecosistema , Panamá , Densidad de Población , Clima Tropical
19.
New Phytol ; 202(2): 616-627, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24325257

RESUMEN

Because orchids are dependent on mycorrhizal fungi for germination and establishment of seedlings, differences in the mycorrhizal communities associating with orchids can be expected to mediate the abundance, spatial distribution and coexistence of terrestrial orchids in natural communities. We assessed the small-scale spatial distribution of seven orchid species co-occurring in 25 × 25 m plots in two Mediterranean grasslands. In order to characterize the mycorrhizal community associating with each orchid species, 454 pyrosequencing was used. The extent of spatial clustering was assessed using techniques of spatial point pattern analysis. The community of mycorrhizal fungi consisted mainly of members of the Tulasnellaceae, Thelephoraceae and Ceratobasidiaceae, although sporadically members of the Sebacinaceae, Russulaceae and Cortinariaceae were observed. Pronounced differences in mycorrhizal communities were observed between species, whereas strong clustering and significant segregation characterized the spatial distribution of orchid species. However, spatial segregation was not significantly related to phylogenetic dissimilarity of fungal communities. Our results indicate that co-occurring orchid species have distinctive mycorrhizal communities and show strong spatial segregation, suggesting that mycorrhizal fungi are important factors driving niche partitioning in terrestrial orchids and may therefore contribute to orchid coexistence.


Asunto(s)
Basidiomycota , Ecosistema , Micorrizas , Orchidaceae , Simbiosis , Basidiomycota/clasificación , Micorrizas/clasificación , Orchidaceae/clasificación , Especificidad de la Especie
20.
Ecology ; 95(2): 514-26, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24669744

RESUMEN

Intra- and interspecific spatially contagious seed dispersal has far-reaching implications for plant recruitment, distribution, and community assemblage. However, logistical and analytical limitations have curtailed our understanding concerning the mechanisms and resulting spatial patterns of contagious seed dispersal in most systems and, especially, in complex seed-disperser networks. We investigated mechanisms of seed aggregation using techniques of spatial point pattern analysis and extensive data sets on mutispecific endozoochorous seed rain generated by five frugivorous mammals in three Mediterranean shrublands over two seasons. Our novel analytical approach revealed three hierarchical and complementary mechanisms of seed aggregation acting at different levels (fecal samples, seeds, pairs of seed species) and spatial scales. First, the three local guilds of frugivores tended to deliver their feces highly aggregated at small and intermediate spatial scales, and the overall pattern of fecal delivery could be described well by a nested double-cluster Thomas process. Second, once the strong observed fecal aggregation was accounted for, the distribution of mammal feces containing seeds was clustered within the pattern of all feces (i.e., with and without seeds), and the density of fecal samples containing seeds was higher than expected around other feces containing seeds in two out of the three studied seed-disperser networks. Finally, at a finer level, mark correlation analyses revealed that for some plant species pairs, the number of dispersed seeds was positively associated either at small or large spatial scales. Despite the relatively invariant patterning of nested double-clustering, some attributes of endozoochorous seed rain (e.g., intensity, scales of aggregation) were variable among study sites due to changes in the ecological context in which seeds and their dispersers interact. Our investigation disentangles for the first time the hierarchy of synergic mechanisms of spatially contagious seed dispersal at a range of spatial scales in complex seed-disperser networks, thus providing a robust and widely applicable framework for future studies.


Asunto(s)
Clima , Ecosistema , Herbivoria/fisiología , Mamíferos/fisiología , Semillas/fisiología , Animales , Demografía , Heces , Estaciones del Año , España , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA