Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 351-384, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37068769

RESUMEN

Thiolases are CoA-dependent enzymes that catalyze the thiolytic cleavage of 3-ketoacyl-CoA, as well as its reverse reaction, which is the thioester-dependent Claisen condensation reaction. Thiolases are dimers or tetramers (dimers of dimers). All thiolases have two reactive cysteines: (a) a nucleophilic cysteine, which forms a covalent intermediate, and (b) an acid/base cysteine. The best characterized thiolase is the Zoogloea ramigera thiolase, which is a bacterial biosynthetic thiolase belonging to the CT-thiolase subfamily. The thiolase active site is also characterized by two oxyanion holes, two active site waters, and four catalytic loops with characteristic amino acid sequence fingerprints. Three thiolase subfamilies can be identified, each characterized by a unique sequence fingerprint for one of their catalytic loops, which causes unique active site properties. Recent insights concerning the thiolase reaction mechanism, as obtained from recent structural studies, as well as from classical and recent enzymological studies, are addressed, and open questions are discussed.


Asunto(s)
Coenzima A , Cisteína , Coenzima A/química , Coenzima A/metabolismo , Cisteína/metabolismo , Modelos Moleculares , Acetil-CoA C-Acetiltransferasa/química , Acetil-CoA C-Acetiltransferasa/metabolismo , Dominio Catalítico
2.
Biochemistry ; 62(11): 1794-1806, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37162263

RESUMEN

Four catalytic amino acids at triosephosphate isomerase (TIM) are highly conserved: N11, K13, H95, and E167. Asparagine 11 is the last of these to be characterized in mutagenesis studies. The ND2 side chain atom of N11 is hydrogen bonded to the O-1 hydroxyl of enzyme-bound dihydroxyacetone phosphate (DHAP), and it sits in an extended chain of hydrogen-bonded side chains that includes T75' from the second subunit. The N11A variants of wild-type TIM from Trypanosoma brucei brucei (TbbTIM) and Leishmania mexicana (LmTIM) undergo dissociation from the dimer to monomer under our assay conditions. Values of Kas = 8 × 103 and 1 × 106 M-1, respectively, were determined for the conversion of monomeric N11A TbbTIM and LmTIM into their homodimers. The N11A substitution at the variant of LmTIM previously stabilized by the E65Q substitution gives the N11A/E65Q variant that is stable to dissociation under our assay conditions. The X-ray crystal structure of N11A/E65Q LmTIM shows an active site that is essentially superimposable on that for wild-type TbbTIM, which also has a glutamine at position 65. A comparison of the kinetic parameters for E65Q LmTIM and N11A/E65Q LmTIM-catalyzed reactions of (R)-glyceraldehyde 3-phosphate (GAP) and (DHAP) shows that the N11A substitution results in a (13-14)-fold decrease in kcat/Km for substrate isomerization and a similar decrease in kcat for DHAP but only a 2-fold decrease in kcat for GAP.


Asunto(s)
Aminoácidos , Triosa-Fosfato Isomerasa , Triosa-Fosfato Isomerasa/química , Catálisis , Hidrógeno
3.
J Biol Chem ; 298(12): 102614, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265586

RESUMEN

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Asunto(s)
Prolil Hidroxilasas , Proteína Disulfuro Isomerasas , Humanos , Dominio Catalítico , Colágeno/metabolismo , Péptidos/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Conformación Proteica
4.
J Biol Chem ; 296: 100197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334883

RESUMEN

Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H-the poorly characterized endoplasmic reticulum-localized transmembrane prolyl 4-hydroxylase (P4H-TM)-is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer-dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.


Asunto(s)
Dioxigenasas/química , Prolil Hidroxilasas/química , Cristalografía por Rayos X , Motivos EF Hand , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
5.
J Struct Biol ; 213(3): 107776, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371166

RESUMEN

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2ß2 tetrameric enzyme. The α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities and the ß-chain provides the 3-ketoacyl-CoA thiolase (KAT) activity. Enzyme kinetic data reported here show that medium and long chain enoyl-CoA molecules are preferred substrates for MtTFE. Modelling studies indicate how the linear medium and long acyl chains of these substrates can bind to each of the active sites. In addition, crystallographic binding studies have identified three new CoA binding sites which are different from the previously known CoA binding sites of the three TFE active sites. Structure comparisons provide new insights into the properties of ECH, HAD and KAT active sites of MtTFE. The interactions of the adenine moiety of CoA with loop-2 of the ECH active site cause a conformational change of this loop by which a competent ECH active site is formed. The NAD+ binding domain (domain C) of the HAD part of MtTFE has only a few interactions with the rest of the complex and adopts a range of open conformations, whereas the A-domain of the ECH part is rigidly fixed with respect to the HAD part. Two loops, the CB1-CA1 region and the catalytic CB4-CB5 loop, near the thiolase active site and the thiolase dimer interface, have high B-factors. Structure comparisons suggest that a competent and stable thiolase dimer is formed only when complexed with the α-chains, highlighting the importance of the assembly for the proper functioning of the complex.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas , Mycobacterium tuberculosis , 3-Hidroxiacil-CoA Deshidrogenasas/química , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Enoil-CoA Hidratasa/química , Oxidación-Reducción , Especificidad por Sustrato
6.
J Struct Biol ; 210(3): 107494, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32171906

RESUMEN

Degradation of fatty acids by the ß-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the ß-oxidation are catalyzed by two heterotetrameric α2ß2 enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The α-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the ß-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-α is a catalytically active monomer whereas EcTFE-ß is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-α chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of ß-oxidation in E. coli.


Asunto(s)
Enoil-CoA Hidratasa/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Oxidación-Reducción , Especificidad por Sustrato
7.
PLoS Pathog ; 14(5): e1007116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29813135

RESUMEN

De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.


Asunto(s)
Carbono/metabolismo , Ácidos Grasos/biosíntesis , Esteroles/biosíntesis , Trypanosoma brucei brucei/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferasas/metabolismo , Acilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Insectos Vectores/parasitología , Leucina/metabolismo , Ácido Mevalónico/metabolismo , Prolina/metabolismo , Treonina/metabolismo , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología
8.
Biochem J ; 476(2): 307-332, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30573650

RESUMEN

The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the ß-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.


Asunto(s)
Acilcoenzima A/química , Proteínas Portadoras/química , Modelos Moleculares , Proteínas de Pez Cebra/química , Animales , Dominio Catalítico , Humanos , Especificidad por Sustrato , Pez Cebra
9.
Biochem J ; 476(13): 1975-1994, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235482

RESUMEN

The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid ß-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily.


Asunto(s)
Enoil-CoA Hidratasa/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Aerobiosis , Anaerobiosis , Catálisis , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
10.
Biochem J ; 474(5): 751-769, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28093469

RESUMEN

Collagen prolyl 4-hydroxylase (C-P4H), an α2ß2 heterotetramer, is a crucial enzyme for collagen synthesis. The α-subunit consists of an N-terminal dimerization domain, a central peptide substrate-binding (PSB) domain, and a C-terminal catalytic (CAT) domain. The ß-subunit [also known as protein disulfide isomerase (PDI)] acts as a chaperone, stabilizing the functional conformation of C-P4H. C-P4H has been studied for decades, but its structure has remained elusive. Here, we present a three-dimensional small-angle X-ray scattering model of the entire human C-P4H-I heterotetramer. C-P4H is an elongated, bilobal, symmetric molecule with a length of 290 Å. The dimerization domains from the two α-subunits form a protein-protein dimer interface, assembled around the central antiparallel coiled-coil interface of their N-terminal α-helices. This region forms a thin waist in the bilobal tetramer. The two PSB/CAT units, each complexed with a PDI/ß-subunit, form two bulky lobes pointing outward from this waist region, such that the PDI/ß-subunits locate at the far ends of the ßααß complex. The PDI/ß-subunit interacts extensively with the CAT domain. The asymmetric shape of two truncated C-P4H-I variants, also characterized in the present study, agrees with this assembly. Furthermore, data from these truncated variants show that dimerization between the α-subunits has an important role in achieving the correct PSB-CAT assembly competent for catalytic activity. Kinetic assays with various proline-rich peptide substrates and inhibitors suggest that, in the competent assembly, the PSB domain binds to the procollagen substrate downstream from the CAT domain.


Asunto(s)
Prolina/química , Prolil Hidroxilasas/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Prolina/metabolismo , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Difracción de Rayos X
11.
Biochemistry ; 55(21): 3036-47, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27149328

RESUMEN

Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M(-1) s(-1)) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M(-2) s(-1)] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison with the corresponding parameters for wild-type, I172A, and L232A TbbTIM-catalyzed reactions shows that the effect of I172A and L232A mutations on ΔG(⧧) for the wild-type TbbTIM-catalyzed reactions of the substrate pieces is nearly the same as the effect of the same mutations on TbbTIM previously mutated at the second side chain. This provides strong evidence that mutation of the first hydrophobic side chain does not affect the functioning of the second side chain in catalysis of the reactions of the substrate pieces. By contrast, the effects of I172A and L232A mutations on ΔG(⧧) for wild-type TbbTIM-catalyzed reactions of the whole substrate are different from the effect of the same mutations on TbbTIM previously mutated at the second side chain. This is due to the change in the rate-determining step that determines the barrier to the isomerization reaction. X-ray crystal structures are reported for I172A, L232A, and I172A/L232A TIMs and for the complexes of these mutants to the intermediate analogue phosphoglycolate (PGA). The structures of the PGA complexes with wild-type and mutant enzymes are nearly superimposable, except that the space opened by replacement of the hydrophobic side chain is occupied by a water molecule that lies ∼3.5 Å from the basic side chain of Glu167. The new water at I172A mutant TbbTIM provides a simple rationalization for the increase in the activation barrier ΔG(⧧) observed for mutant enzyme-catalyzed reactions of the whole substrate and substrate pieces. By contrast, the new water at the L232A mutant does not predict the decrease in ΔG(⧧) observed for the mutant enzyme-catalyzed reactions of the substrate piece GA.


Asunto(s)
Dihidroxiacetona Fosfato/metabolismo , Ácido Glutámico/química , Gliceraldehído 3-Fosfato/metabolismo , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismo , Trypanosoma brucei brucei/enzimología , Catálisis , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación/genética , Relación Estructura-Actividad , Triosa-Fosfato Isomerasa/genética
12.
Proteins ; 84(8): 1075-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27093562

RESUMEN

Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cß2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075-1096. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Acetilcoenzima A/química , Acilcoenzima A/química , Aciltransferasas/química , Malonatos/química , Proteínas Mitocondriales/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Metabolismo de los Lípidos , Malonatos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Trypanosoma brucei brucei/química
13.
BMC Bioinformatics ; 16: 303, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26391121

RESUMEN

BACKGROUND: Codon usage plays a crucial role when recombinant proteins are expressed in different organisms. This is especially the case if the codon usage frequency of the organism of origin and the target host organism differ significantly, for example when a human gene is expressed in E. coli. Therefore, to enable or enhance efficient gene expression it is of great importance to identify rare codons in any given DNA sequence and subsequently mutate these to codons which are more frequently used in the expression host. RESULTS: We describe an open-source web-based application, ATGme, which can in a first step identify rare and highly rare codons from most organisms, and secondly gives the user the possibility to optimize the sequence. CONCLUSIONS: This application provides a simple user-friendly interface utilizing three optimization strategies: 1. one-click optimization, 2. bulk optimization (by codon-type), 3. individualized custom (codon-by-codon) optimization. ATGme is an open-source application which is freely available at: http://atgme.org.


Asunto(s)
Codón/genética , Escherichia coli/genética , Internet , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuencia de Bases , ADN/genética , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2178-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26527136

RESUMEN

Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.


Asunto(s)
Acilcoenzima A/metabolismo , Dodecenoil-CoA Isomerasa/química , Dodecenoil-CoA Isomerasa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Acilcoenzima A/química , Dominio Catalítico , Estabilidad de Enzimas , Enlace de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
15.
Mol Microbiol ; 92(4): 885-99, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24684232

RESUMEN

Geranylgeranylglyceryl phosphate synthase (GGGPS) family enzymes catalyse the formation of an ether bond between glycerol-1-phosphate and polyprenyl diphosphates. They are essential for the biosynthesis of archaeal membrane lipids, but also occur in bacterial species, albeit with unknown physiological function. It has been known that there exist two phylogenetic groups (I and II) of GGGPS family enzymes, but a comprehensive study has been missing. We therefore visualized the variability within the family by applying a sequence similarity network, and biochemically characterized 17 representative GGGPS family enzymes regarding their catalytic activities and substrate specificities. Moreover, we present the first crystal structures of group II archaeal and bacterial enzymes. Our analysis revealed that the previously uncharacterized bacterial enzymes from group II have GGGPS activity like the archaeal enzymes and differ from the bacterial group I enzymes that are heptaprenylglyceryl phosphate synthases. The length of the isoprenoid substrate is determined in group II GGGPS enzymes by 'limiter residues' that are different from those in group I enzymes, as shown by site-directed mutagenesis. Most of the group II enzymes form hexamers. We could disrupt these hexamers to stable and catalytically active dimers by mutating a single amino acid that acts as an 'aromatic anchor'.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Archaea/enzimología , Bacterias/enzimología , Transferasas Alquil y Aril/genética , Modelos Moleculares , Filogenia , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3212-25, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25478839

RESUMEN

Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of the Zoogloea ramigera biosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nß2-Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.


Asunto(s)
Acetil-CoA C-Aciltransferasa/química , Mitocondrias/enzimología , Acetil-CoA C-Aciltransferasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Coenzima A/química , Coenzima A/metabolismo , Cristalografía por Rayos X , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Zoogloea/enzimología
17.
Biochem J ; 455(1): 119-30, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23909465

RESUMEN

Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.


Asunto(s)
Proteínas Portadoras/química , Coenzima A/química , Cisteína/química , Leishmania mexicana/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Secuencias de Aminoácidos , Biocatálisis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Coenzima A/metabolismo , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Leishmania mexicana/enzimología , Leishmania mexicana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
18.
FEBS Open Bio ; 14(4): 655-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458818

RESUMEN

Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the ß-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.


Asunto(s)
Enoil-CoA Hidratasa , NAD , Animales , Humanos , Ratas , Dominio Catalítico , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Ácido Glutámico , NAD/metabolismo , Oxidorreductasas/metabolismo
19.
Biochemistry ; 52(34): 5928-40, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23909928

RESUMEN

Triosephosphate isomerase (TIM) catalyzes the isomerization of dihydroxyacetone phosphate to form d-glyceraldehyde 3-phosphate. The effects of two structural mutations in TIM on the kinetic parameters for catalysis of the reaction of the truncated substrate glycolaldehyde (GA) and the activation of this reaction by phosphite dianion are reported. The P168A mutation results in similar 50- and 80-fold decreases in (kcat/Km)E and (kcat/Km)E·HPi, respectively, for deprotonation of GA catalyzed by free TIM and by the TIM·HPO(3)(2-) complex. The mutation has little effect on the observed and intrinsic phosphite dianion binding energy or the magnitude of phosphite dianion activation of TIM for catalysis of deprotonation of GA. A loop 7 replacement mutant (L7RM) of TIM from chicken muscle was prepared by substitution of the archaeal sequence 208-TGAG with 208-YGGS. L7RM exhibits a 25-fold decrease in (kcat/Km)E and a larger 170-fold decrease in (kcat/Km)E·HPi for reactions of GA. The mutation has little effect on the observed and intrinsic phosphodianion binding energy and only a modest effect on phosphite dianion activation of TIM. The observation that both the P168A and loop 7 replacement mutations affect mainly the kinetic parameters for TIM-catalyzed deprotonation but result in much smaller changes in the parameters for enzyme activation by phosphite dianion provides support for the conclusion that catalysis of proton transfer and dianion activation of TIM take place at separate, weakly interacting, sites in the protein catalyst.


Asunto(s)
Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/genética , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Animales , Catálisis , Dominio Catalítico/genética , Pollos , Cinética , Músculos/enzimología , Mutación , Fosfitos/farmacología , Protones , Conejos , Termodinámica , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
20.
Curr Opin Struct Biol ; 82: 102671, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542911

RESUMEN

The crotonase fold is generated by a framework of four repeats of a ßßα-unit, extended by two helical regions. The active site of crotonase superfamily (CS) enzymes is located at the N-terminal end of the helix of the third repeat, typically being covered by a C-terminal helix. A major subset of CS-enzymes catalyzes acyl-CoA-dependent reactions, allowing for a diverse range of acyl-tail modifications. Most of these enzymes occur as trimers or hexamers (dimers of trimers), but monomeric forms are also observed. A common feature of the active sites of CS-enzymes is an oxyanion hole, formed by two peptide-NH hydrogen bond donors, which stabilises the negatively charged thioester oxygen atom of the reaction intermediate. Structural properties and possible use of these enzymes for biotechnological applications are discussed.


Asunto(s)
Acilcoenzima A , Enoil-CoA Hidratasa , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Dominio Catalítico , Sitios de Unión , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA