Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chem ; 93(8): 3857-3866, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591162

RESUMEN

Protein histidine phosphorylation (pHis) is involved in molecular signaling networks in bacteria, fungi, plants, and higher eukaryotes including mammals and is implicated in human diseases such as cancer. Detailed investigations of the pHis modification are hampered due to its acid-labile nature and consequent lack of tools to study this post-translational modification (PTM). We here demonstrate three molecularly imprinted polymer (MIP)-based reagents, MIP1-MIP3, for enrichment of pHis peptides and subsequent characterization by chromatography and mass spectrometry (LC-MS). The combination of MIP1 and ß-elimination provided some selectivity for improved detection of pHis peptides. MIP2 was amenable to larger pHis peptides, although with poor selectivity. Microsphere-based MIP3 exhibited improved selectivity and was amenable to enrichment and detection by LC-MS of pHis peptides in tryptic digests of protein mixtures. These MIP protocols do not involve any acidic solvents during sample preparation and enrichment, thus preserving the pHis modification. The presented proof-of-concept results will lead to new protocols for highly selective enrichment of labile protein phosphorylations using molecularly imprinted materials.


Asunto(s)
Histidina , Impresión Molecular , Animales , Cromatografía Liquida , Humanos , Polímeros Impresos Molecularmente , Péptidos , Proteínas
2.
Anal Chem ; 91(15): 10188-10196, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283183

RESUMEN

Reversible protein phosphorylation on serine, threonine, and tyrosine residues is essential for fast, specific, and accurate signal transduction in cells. Up to now, the identification and quantification of phosphorylated amino acids, peptides, and proteins continue to be one of the significant challenges in contemporary bioanalytical research. In this paper, a series of surface grafted monoliths in the capillary format targeting phosphorylated serine has been prepared by first synthesizing a monolithic core substrate material based on trimethylolpropane trimethacrylate, onto which a thin surface-imprinted layer was established by oriented photografting of a variety of mono- and bis-imidazolium host monomers at subzero temperature, using six different continuous or pulsed UV light sources. The imprinted monolith capillaries were evaluated in a capillary liquid chromatographic system connected to a mass spectrometer in order to test the specific retention of phosphorylated peptides. Site-specific recognition selectivity and specificity for phosphorylated serine was demonstrated when separating amino acids and peptides, proving that the optimized materials could be used as novel trapping media in affinity-based phosphoproteomic analysis.


Asunto(s)
Angiotensina II/metabolismo , Cromatografía de Afinidad/métodos , Imidazoles/química , Impresión Molecular/métodos , Fosfopéptidos/aislamiento & purificación , Polímeros/química , Rayos Ultravioleta , Angiotensina II/química , Humanos , Fosfopéptidos/química , Fosforilación , Polímeros/efectos de la radiación
3.
Anal Chem ; 89(21): 11332-11340, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28972365

RESUMEN

Protein phosphorylation at distinct tyrosine residues (pY) is essential for fast, specific, and accurate signal transduction in cells. Enrichment of pY-containing peptides derived from phosphoproteins is commonly facilitated by use of immobilized anti-pY antibodies prior to phosphoproteomics analysis by mass spectrometry. We here report on an alternative approach for pY-peptide enrichment using inexpensive pY-imprinted polymer (pY-MIP). We assessed by mass spectrometry the performance of pY-MIP for enrichment and sequencing of phosphopeptides obtained by tryptic digestion of protein extracts from HeLa cells. The combination of pY-MIP- and TiO2-based phosphopeptide enrichment provided more than 90% selectivity for phosphopeptides. Mass spectrometry signal intensities were enhanced for most pY-phosphopeptides (approximately 70%) when using the pY-MIP-TiO2 combination as compared to TiO2 alone. pY constituted up to 8% of the pY-MIP-TiO2-enriched phosphopeptide fractions. The pY-MIP-TiO2 and the TiO2 protocols yielded comparable numbers of distinct phosphopeptides, 1693 and 1842, respectively, from microgram levels of peptide samples. Detailed analysis of physicochemical properties of pY-MIP-TiO2-enriched phosphopeptides demonstrated that this protocol retrieved phosphopeptides that tend to be smaller (<24 residues), less acidic, and almost exclusively monophosphorylated, as compared to TiO2 alone. These unique properties render the pY-MIP-based phosphopeptide enrichment technique an attractive alternative for applications in phosphoproteomics research.


Asunto(s)
Impresión Molecular , Fragmentos de Péptidos/análisis , Fosfoproteínas/análisis , Fosfotirosina/química , Proteómica/métodos , Titanio/química , Cromatografía de Fase Inversa , Células HeLa , Humanos , Fragmentos de Péptidos/química , Fosfoproteínas/química , Espectrometría de Masas en Tándem , Tripsina/química
4.
ACS Omega ; 7(1): 587-598, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036726

RESUMEN

The use of polymerizable hosts in anion imprinting has led to powerful receptors with high oxyanion affinity and specificity in both aqueous and non-aqueous environments. As demonstrated in previous reports, a carefully tuned combination of orthogonally interacting binding groups, for example, positively charged and neutral hydrogen bonding monomers, allows receptors to be constructed for use in either organic or aqueous environments, in spite of the polymer being prepared in non-competitive solvent systems. We here report on a detailed experimental design of phenylphosphonic and benzoic acid-imprinted polymer libraries prepared using either urea- or thiourea-based host monomers in the presence or absence of cationic comonomers for charge-assisted anion recognition. A comparison of hydrophobic and hydrophilic crosslinking monomers allowed optimum conditions to be identified for oxyanion binding in non-aqueous, fully aqueous, or high-salt media. This showed that recognition improved with the water content for thiourea-based molecularly imprinted polymers (MIPs) based on hydrophobic EGDMA with an opposite behavior shown by the polymers prepared using the more hydrophilic crosslinker PETA. While the affinity of thiourea-based MIPs increased with the water content, the opposite was observed for the oxourea counterparts. Binding to the latter could however be enhanced by raising the pH or by the introduction of cationic amine- or Na+-complexing crown ether-based comonomers. Use of high-salt media as expected suppressed the amine-based charge assistance, whereas it enhanced the effect of the crown ether function. Use of the optimized receptors for removing the ubiquitous pesticide glyphosate from urine finally demonstrated their practical utility.

5.
RSC Adv ; 11(36): 22409-22418, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480790

RESUMEN

Glycosylation plays an important role in various pathological processes such as cancer. One key alteration in the glycosylation pattern correlated with cancer progression is an increased level as well as changes in the type of sialylation. Developing molecularly-imprinted polymers (MIPs) with high affinity for sialic acid able to distinguish different glycoforms such as sialic acid linkages is an important task which can help in early cancer diagnosis. Sialyllactose with α2,6' vs. α2,3' sialic acid linkage served as a model trisaccharide template. Boronate chemistry was employed in combination with a library of imidazolium-based monomers targeting the carboxylate group of sialic acid. The influence of counterions of the cationic monomers and template on their interactions was investigated by means of 1H NMR titration studies. The highest affinities were afforded using a combination of Br- and Na+ counterions of the monomers and template, respectively. The boronate ester formation was confirmed by MS and 1H/11B NMR, indicating 1 : 2 stoichiometries between sialyllactoses and boronic acid monomer. Polymers were synthesized in the form of microparticles using boronate and imidazolium monomers. This combinatorial approach afforded MIPs selective for the sialic acid linkages and compatible with an aqueous environment. The molecular recognition properties with respect to saccharide templates and glycosylated targets were reported.

6.
J Mater Chem B ; 5(5): 953-960, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32263873

RESUMEN

We report on the design and characterization of imprinted cationic host polymers for selective trapping of phosphoserine and phosphotyrosine peptides. A series of imidazolium host monomers were synthesized and characterized with respect to binding affinity and stoichiometry of interaction with salts of phenylphosphonic acid. The strongest binders were subsequently used for the preparation of imprinted polymers in the form of crushed monoliths, using Fmoc-phosphotyrosine-ethyl ester or Fmoc-phosphoserine-ethyl ester as templates in combination with a hydrophilic crosslinking monomer. The polymers were compared with respect to binding and its dependence on solvent, and whether charged or uncharged host monomers were used. The recipes were subsequently implemented in the capillary monolith format for evaluation by micro-liquid chromatography in both buffered and organic media. Results from both tested formats reveal that the cationic host polymers displayed enhanced recognition in polar and buffered media, in contrast to neutral urea-based hosts which showed best results in acetonitrile rich mobile phases.

7.
Sci Rep ; 7: 44299, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303896

RESUMEN

Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers - the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production.


Asunto(s)
Endotoxinas/aislamiento & purificación , Impresión Molecular/métodos , Organofosfonatos/química , Fosfatos/química , Fosfolípidos/química , Reactivos de Enlaces Cruzados/química , Contaminación de Medicamentos/prevención & control , Endotoxinas/química , Imidazoles/química , Metacrilatos/química , Imitación Molecular , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Polimerizacion , Urea/química
8.
J Chromatogr A ; 1471: 45-50, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27765418

RESUMEN

Selective enrichment techniques are essential for mapping of protein posttranslational modifications (PTMs). Phosphorylation is one of the PTMs which continues to be associated with significant analytical challenges. Particularly problematic are tyrosine-phosphorylated peptides (pY-peptides) resulting from tryptic digestion which commonly escape current chemo- or immuno- affinity enrichments and hence remain undetected. We here report on significant improvements in this regard using pY selective molecularly imprinted polymers (pY-MIPs). The pY-MIP was compared with titanium dioxide (TiO2) affinity based enrichment and immunoprecipitation (IP) with respect to selective enrichment from a mixture of 13 standard peptides at different sample loads. At a low sample load (1pmol of each peptide), IP resulted in enrichment of only a triply phosphorylated peptide whereas TiO2 enriched phosphopeptides irrespective of the amino acid side chain. However, with increased sample complexity, TiO2 failed to enrich the doubly phosphorylated peptides. This contrasted with the pY-MIP showing enrichment of all four tyrosine phosphorylated peptides at 1pmol sample load of each peptide with a few other peptides binding unselectively. At an increased sample complexity consisting of the standard peptides spiked into mouse brain digest, the MIP showed clear enrichment of all four pY- peptides.


Asunto(s)
Técnicas de Química Analítica/métodos , Impresión Molecular , Fosfopéptidos/aislamiento & purificación , Polímeros/química , Técnicas de Química Analítica/normas , Fosfopéptidos/química , Fosforilación , Titanio/química , Tirosina/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-26563602

RESUMEN

Technology that facilitates rapid investigation of solid phase extraction protocols using very small amounts of sorbent can save both time and money. The microfabricated ISET (Integrated Selective Enrichment Target) interfaced with MALDI mass spectrometry is able to provide an efficient, economic and generic optimization process for SPE sample preparation. The SPE is performed in a rapid and parallel fashion, with a processing time off only 2h per ISET with 96 samples. Each of the 96 wells on the ISET can hold 600nL of SPE sorbent. The ability to work with small amounts of sorbent and samples in the ISET platform provides a big advantage when developing affinity sorbents, such as molecularly imprinted polymers (MIPs). Here it is demonstrated that an amount of 25mg phosphoserine imprinted MIP (pS-MIP) sorbent can allow for analysis of more than 500 ISET nanovials using a multitude of different conditions. In the presented case, the multiplexed experiments allowed for early discovery of unspecific interactions and subsequent minimization of these, resulting in a protocol that provided improved enrichment of phosphopeptides.


Asunto(s)
Proteómica/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Caseínas , Bovinos , Fosfoserina
10.
ChemSusChem ; 8(24): 4139-48, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26556779

RESUMEN

Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether.


Asunto(s)
Alquenos/química , Cianuros/química , Metano/química , Residuos , Modelos Moleculares , Conformación Molecular , Rutenio/química , Rutenio/aislamiento & purificación , Dióxido de Silicio/química
11.
Dalton Trans ; 41(43): 13258-60, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23007899

RESUMEN

Three ruthenium-based complexes exhibiting catalytic activity in olefin metathesis have been examined for the presence of interesting nonlinear optical (NLO) properties. Measurements were performed by the Z-scan technique using a tunable femtosecond laser system. This initial screening for potential new applications in photonics of complexes representative of a wide family of ruthenium-based olefin metathesis catalysts has found moderately strong two-photon and three-photon absorption properties in relatively simple molecules that may lead to the development of a new class of strong nonlinear absorbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA