Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364381

RESUMEN

Honey is a natural product and can be described by its botanical origin, determined by the plants from which the bees collect nectar. It significantly influences the taste of honey and is often used as a quality criterion. Unfortunately, this opens up the possibility of food fraud. Currently, various methods are used to check the authenticity of monofloral honey. The laborious, manual melissopalynology is considered an essential tool in the verification process. In this work, the volatile organic compounds obtained from the headspace of honey are used to prove their authenticity. The headspace of 58 honey samples was analyzed using a commercial easy-to-use gas chromatography-coupled ion mobility spectrometer with a headspace sampler (HS-GCxIMS). The honey samples were successfully differentiated by their six different botanical origins using specific markers with principal component analysis in combination with linear discriminant analysis. In addition, 15 honey-typical compounds were identified using measurements of reference compounds. Taking a previously published strategy, retention times of marker compounds were correlated with GC-coupled mass spectrometry (GC-MS) measurements to assist in the identification process.


Asunto(s)
Miel , Compuestos Orgánicos Volátiles , Abejas , Animales , Miel/análisis , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Análisis Discriminante
2.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947876

RESUMEN

Trichoderma atroviride is a strong necrotrophic mycoparasite antagonizing and feeding on a broad range of fungal phytopathogens. It further beneficially acts on plants by enhancing growth in root and shoot and inducing systemic resistance. Volatile organic compounds (VOCs) are playing a major role in all those processes. Light is an important modulator of secondary metabolite biosynthesis, but its influence has often been neglected in research on fungal volatiles. To date, T. atroviride IMI 206040 and T. atroviride P1 are among the most frequently studied T. atroviride strains and hence are used as model organisms to study mycoparasitism and photoconidiation. However, there are no studies available, which systematically and comparatively analyzed putative differences between these strains regarding their light-dependent behavior and VOC biosynthesis. We therefore explored the influence of light on conidiation and the mycoparasitic interaction as well as the light-dependent production of VOCs in both strains. Our data show that in contrast to T. atroviride IMI 206040 conidiation in strain P1 is independent of light. Furthermore, significant strain- and light-dependent differences in the production of several VOCs between the two strains became evident, indicating that T. atroviride P1 could be a better candidate for plant protection than IMI 206040.


Asunto(s)
Luz , Trichoderma/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Regulación Fúngica de la Expresión Génica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA