Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(1): 1-21, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830742

RESUMEN

The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.


Asunto(s)
Cyprinidae , Microbioma Gastrointestinal , Peces Killi , Microbiota , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Peces Killi/genética , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , ARN Ribosómico 16S , Hidrocarburos , Golfo de México , Contaminantes Químicos del Agua/toxicidad
2.
Environ Sci Technol ; 56(10): 6078-6090, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35486899

RESUMEN

Researchers have developed numerous per- and polyfluoroalkyl substances (PFAS)-free aqueous film-forming foam (AFFF) formulations to replace PFAS-containing AFFF used for fire suppression. As part of the Department of Defense's Strategic Environmental Research and Development Program (SERDP), we examined the direct lethal effects of seven PFAS-free AFFF and a PFAS-containing AFFF on 14 aquatic species using a series of lethal concentration (LC50) tests. We assessed the LC10, LC50, and LC90 values using log-logistic and logit analyses. Across all aquatic species tested, we discovered that exposure to at least one PFAS-free AFFF was more or as toxic as exposure to the PFAS-containing AFFF. For most cases, National Foam Avio F3 Green KHC 3% and Buckeye Platinum Plus C6MILSPEC 3% were the most and least toxic formulations, respectively. Moreover, we found consistency among results from multiple experiments using the same minnow species (Pimephales promelas) and among closely related taxa (e.g., daphnids, amphibians). Lastly, the LC50 values for AFFF formulations trended lower for tested marine species as compared to those of freshwater species. These results dramatically increase the current knowledge on the potentially toxic effects of AFFF but also highlight the need for additional research and the development of new PFAS-free AFFF that are more "ecologically friendly" than those containing persistent PFAS.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aerosoles , Fluorocarburos/análisis , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Oecologia ; 188(2): 571-581, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30088085

RESUMEN

It is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species. In a microcosm experiment simulating an invasion, we found that the invasive species reached its highest densities when there was a combination of both high resources and the presence of a shared parasite, but not for each of these conditions alone (i.e., a significant resource x parasite interaction). This result can be explained by changes in native host population density; high resource levels initially led to an increase in the density of the native host, which caused larger epidemics when the parasite was present. This high infection prevalence caused a subsequent reduction in native host density, increasing available resources and allowing the invasive species to establish relatively dense populations. Thus, in this system, native communities with a combination of high resource levels and parasitism may be the most vulnerable to invasions. More generally, our results suggest that parasitism and resource availability can have interactive, non-additive effects on the outcome of invasions.


Asunto(s)
Parásitos , Zooplancton , Animales , Daphnia , Agua Dulce , Densidad de Población
4.
Environ Toxicol Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189750

RESUMEN

Amid global concern regarding the health and environmental impacts of per- and polyfluoroalkyl substances (PFAS), there is an urgent need to develop and implement alternative products without PFAS. Consequently, PFAS-free firefighting foams used for fire suppression have been developed for use in military and residential settings. To facilitate the selection of lower-risk PFAS-free foams, the present study focused on the chronic toxicity of seven PFAS-free and one PFAS-containing foam to six aquatic species. Target species included two cladocerans, Daphnia magna and Ceriodaphnia dubia; the chironomid Chironomus dilutus; the mysid Americamysis bahia; and two fish species, Pimephales promelas and Cyprinodon variegatus, with endpoints including growth, development, reproduction, and survival. To facilitate comparison and product toxicity rankings, effective concentrations (20%, 50%) and no- and lowest-observed-effect concentrations (NOECs and LOECs, respectively) were calculated. Effective concentrations, NOECs, and LOECs varied by over an order of magnitude among foams and species, with several of the PFAS-free formulations ranked as highly toxic based on US Environmental Protection Agency alternatives assessment hazard criteria. Overall, the PFAS-free foams were found to exhibit either similar or greater toxicity compared to the PFAS-containing reference foam across several species and endpoints. Nonmonotonic and hormetic dose responses were observed in D. magna for several of the tested foams, with increased reproduction and growth at intermediate exposures. Generally, tested foam toxicity rankings were consistent with a related acute toxicity study using the same species and formulations, and other research using soil invertebrates. Combined with related efforts for other taxa including mammals, birds, and plants, the present research will facilitate the selection of appropriate PFAS-free firefighting foams that minimize harm to the environment. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA