Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 53(4): 645-54, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486019

RESUMEN

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.


Asunto(s)
Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Oxigenasas de Función Mixta/química , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/química , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Animales , Catálisis , Línea Celular Tumoral , Codón de Terminación , Células HeLa , Humanos , Hidrólisis , Hidroxilación , Histona Demetilasas con Dominio de Jumonji , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
2.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30674555

RESUMEN

Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Homeostasis , Metilación , Schizosaccharomyces/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/metabolismo
3.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29950663

RESUMEN

In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read "These authors contributed equally: Suzana Markolovic, Qinqin Zhuang." The error has been corrected in the HTML and PDF versions of the article.

4.
Nat Chem Biol ; 14(7): 688-695, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915238

RESUMEN

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.


Asunto(s)
Biocatálisis , GTP Fosfohidrolasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , GTP Fosfohidrolasas/química , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/química , Modelos Moleculares
5.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795413

RESUMEN

Hypoxia-inducible factor (HIF) is a transcriptional activator with a central role in regulating cellular responses to hypoxia. It is also emerging as a major target for viral manipulation of the cellular environment. Under normoxic conditions, HIF is tightly suppressed by the activity of oxygen-dependent prolyl and asparaginyl hydroxylases. The asparaginyl hydroxylase active against HIF, factor inhibiting HIF (FIH), has also been shown to hydroxylate some ankyrin repeat (ANK) proteins. Using bioinformatic analysis, we identified the five ANK proteins of the parapoxvirus orf virus (ORFV) as potential substrates of FIH. Consistent with this prediction, coimmunoprecipitation of FIH was detected with each of the ORFV ANK proteins, and for one representative ORFV ANK protein, the interaction was shown to be dependent on the ANK domain. Immunofluorescence studies revealed colocalization of FIH and the viral ANK proteins. In addition, mass spectrometry confirmed that three of the five ORFV ANK proteins are efficiently hydroxylated by FIH in vitro While FIH levels were unaffected by ORFV infection, transient expression of each of the ORFV ANK proteins resulted in derepression of HIF-1α activity in reporter gene assays. Furthermore, ORFV-infected cells showed upregulated HIF target gene expression. Our data suggest that sequestration of FIH by ORFV ANK proteins leads to derepression of HIF activity. These findings reveal a previously unknown mechanism of viral activation of HIF that may extend to other members of the poxvirus family. IMPORTANCE: The protein-protein binding motif formed from multiple repeats of the ankyrin motif is common among chordopoxviruses. However, information on the roles of these poxviral ankyrin repeat (ANK) proteins remains limited. Our data indicate that the parapoxvirus orf virus (ORFV) is able to upregulate hypoxia-inducible factor (HIF) target gene expression. This response is mediated by the viral ANK proteins, which sequester the HIF regulator FIH (factor inhibiting HIF). This is the first demonstration of any viral protein interacting directly with FIH. Our data reveal a new mechanism by which viruses reprogram HIF, a master regulator of cellular metabolism, and also show a new role for the ANK family of poxvirus proteins.


Asunto(s)
Repetición de Anquirina , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxigenasas de Función Mixta/genética , Virus del Orf/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Hipoxia de la Célula , Biología Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Intersticiales del Testículo , Masculino , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Virus del Orf/metabolismo , Cultivo Primario de Células , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Ovinos , Transducción de Señal
6.
Extremophiles ; 22(3): 553-562, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29523972

RESUMEN

YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960-962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rhodothermus/enzimología , Proteínas Ribosómicas/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodothermus/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Homología de Secuencia
7.
J Biol Chem ; 290(34): 20712-20722, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26152730

RESUMEN

The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.


Asunto(s)
Dioxigenasas/metabolismo , Histona Demetilasas/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Procesamiento Proteico-Postraduccional , Bacterias/enzimología , Bacterias/genética , Biocatálisis , Colágeno/biosíntesis , Dioxigenasas/genética , Expresión Génica , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Hierro/metabolismo , Oxigenasas de Función Mixta/genética , Modelos Moleculares
8.
J Antimicrob Chemother ; 70(2): 463-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25324420

RESUMEN

OBJECTIVES: Metallo-ß-lactamase (MBL)-based resistance is a threat to the use of most ß-lactam antibiotics. Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the substitutions affect NDM activity despite being located outside the active site. This study compares the biochemical properties of seven clinically reported NDM variants. METHODS: NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near homogeneity. Thermal stability and secondary structures of the variants were investigated using differential scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for representative carbapenem, cephalosporin and penicillin substrates. RESULTS: The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however, differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature of 72°C compared with 60°C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for carbapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substitution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values <1 s(-1) µM(-1). CONCLUSIONS: These results do not define major differences in the catalytic efficiencies of the studied NDM variants and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed. The results do reveal that the clinically observed substitutions can make substantial differences in thermodynamic stability, suggesting that this may be a factor in MBL evolution.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Variación Genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Clonación Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólisis , Cinética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , beta-Lactamasas/química
9.
J Biol Chem ; 287(12): 8769-81, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22270367

RESUMEN

Factor Inhibiting HIF (FIH) catalyzes the ß-hydroxylation of asparagine residues in HIF-α transcription factors as well as ankyrin repeat domain (ARD) proteins such as Notch and Gankyrin. Although FIH-mediated hydroxylation of HIF-α is well characterized, ARDs were only recently identified as substrates, and less is known about their recognition and hydroxylation by FIH. We investigated the molecular determinants of FIH substrate recognition, with a focus on differences between HIF and ARD substrates. We show that for ARD proteins, structural context is an important determinant of FIH-recognition, but analyses of chimeric substrate proteins indicate that the ankyrin fold alone is not sufficient to explain the distinct substrate properties of the ARDs compared with HIF. For both substrates the kinetic parameters of hydroxylation are influenced by the amino acids proximal to the target asparagine. Although FIH tolerates a variety of chemically disparate residues proximal to the asparagine, we demonstrate that certain combinations of amino acids are not permissive to hydroxylation. Finally, we characterize a conserved RLL motif in HIF and demonstrate that it mediates a high affinity interaction with FIH in the presence of cell lysate or macromolecular crowding agents. Collectively, our data highlight the importance of residues proximal to the asparagine in determining hydroxylation, and identify additional substrate-specific elements that contribute to distinct properties of HIF and ARD proteins as substrates for FIH. These distinct features are likely to influence FIH substrate choice in vivo and, therefore, have important consequences for HIF regulation.


Asunto(s)
Repetición de Anquirina , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Noqueados , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch1/química , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch4 , Receptores Notch/química , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Epigenetics ; 16(1): 14-27, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609604

RESUMEN

Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.


Asunto(s)
Hipoxia de la Célula , Código de Histonas , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Quelantes del Hierro/toxicidad , Células MCF-7 , Procesamiento Proteico-Postraduccional
11.
ACS Chem Biol ; 14(8): 1737-1750, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31287655

RESUMEN

Fe(II)- and 2-oxoglutarate (2OG)-dependent JumonjiC domain-containing histone demethylases (JmjC KDMs) are "epigenetic eraser" enzymes involved in the regulation of gene expression and are emerging drug targets in oncology. We screened a set of clinically used iron chelators and report that they potently inhibit JMJD2A (KDM4A) in vitro. Mode of action investigations revealed that one compound, deferasirox, is a bona fide active site-binding inhibitor as shown by kinetic and spectroscopic studies. Synthesis of derivatives with improved cell permeability resulted in significant upregulation of histone trimethylation and potent cancer cell growth inhibition. Deferasirox was also found to inhibit human 2OG-dependent hypoxia inducible factor prolyl hydroxylase activity. Therapeutic effects of clinically used deferasirox may thus involve transcriptional regulation through 2OG oxygenase inhibition. Deferasirox might provide a useful starting point for the development of novel anticancer drugs targeting 2OG oxygenases and a valuable tool compound for investigations of KDM function.


Asunto(s)
Deferasirox/farmacología , Inhibidores Enzimáticos/farmacología , Quelantes del Hierro/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Desmetilación/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/química
12.
Nat Commun ; 9(1): 1180, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563586

RESUMEN

Oxygenase-catalysed post-translational modifications of basic protein residues, including lysyl hydroxylations and Nε-methyl lysyl demethylations, have important cellular roles. Jumonji-C (JmjC) domain-containing protein 5 (JMJD5), which genetic studies reveal is essential in animal development, is reported as a histone Nε-methyl lysine demethylase (KDM). Here we report how extensive screening with peptides based on JMJD5 interacting proteins led to the finding that JMJD5 catalyses stereoselective C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6). High-resolution crystallographic analyses reveal overall fold, active site and substrate binding/product release features supporting the assignment of JMJD5 as an arginine hydroxylase rather than a KDM. The results will be useful in the development of selective oxygenase inhibitors for the treatment of cancer and genetic diseases.


Asunto(s)
Arginina/química , Proteínas Portadoras/química , Histona Demetilasas/química , Proteínas de la Membrana/química , Proteína S6 Ribosómica/química , Arginina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Hidroxilación , Cinética , Lisina/química , Lisina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína S6 Ribosómica/genética , Proteína S6 Ribosómica/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Termodinámica
13.
Nat Commun ; 9(1): 1675, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686330

RESUMEN

The originally published version of this Article contained an error in the spelling of the author Md. Saiful Islam, which was incorrectly given as Saiful Islam. This has now been corrected in both the PDF and HTML versions of the Article.

14.
ChemMedChem ; 11(8): 773-86, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26997519

RESUMEN

Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia-inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase-catalysed post-translational modifications of the HIF α-subunits, which 1) signal for degradation of HIF-α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF-mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein-protein and protein-nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein-protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Unión Proteica/efectos de los fármacos , Hipoxia Tumoral/efectos de los fármacos
15.
Curr Opin Struct Biol ; 41: 62-72, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27309310

RESUMEN

The Jumonji-C (JmjC) subfamily of 2-oxoglutarate (2OG)-dependent oxygenases are of biomedical interest because of their roles in the regulation of gene expression and protein biosynthesis. Human JmjC 2OG oxygenases catalyze oxidative modifications to give either chemically stable alcohol products, or in the case of Nɛ-methyl lysine demethylation, relatively unstable hemiaminals that fragment to give formaldehyde and the demethylated product. Recent work has yielded conflicting reports as to whether some JmjC oxygenases catalyze N-methyl group demethylation or hydroxylation reactions. We review JmjC oxygenase-catalyzed reactions within the context of structural knowledge, highlighting key differences between hydroxylases and demethylases, which have the potential to inform on the possible type(s) of reactions catalyzed by partially characterized or un-characterized JmjC oxygenases in humans and other organisms.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxigenasas de Función Mixta/metabolismo , Animales , Biocatálisis , Humanos , Multimerización de Proteína , Relación Estructura-Actividad
16.
Front Aging Neurosci ; 8: 120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458368

RESUMEN

OBJECTIVE: Mild cognitive impairment (MCI) in older individuals is associated with increased risk of progression to dementia. The factors predicting progression are not yet well established, yet cognitive performance, particularly for memory, is known to be important. Anosognosia, meaning lack of awareness of one's impaired function, is commonly reported in dementia and is often also a feature of MCI, but its association with risk of progression is not well understood. In particular, self-appraisal measures provide an autonomous measure of insight abilities, without the need of an informant. METHODS: The present study examined the utility of self-appraisal accuracy at baseline for predicting cognitive decline in 51 patients using an informant-free assessment method. Baseline task performance scores were compared to self-assessments of performance to yield a discrimination score (DS) for tasks tapping into memory and executive functions. RESULTS: Linear regression revealed that a larger DS for executive function tasks in MCI predicted functional decline, independent of age, education, and baseline memory and executive task scores. CONCLUSION: These findings indicate that objective estimates of self-appraisal can be used to quantify anosognosia and increase predictive accuracy for decline in MCI.

17.
Nat Cell Biol ; 18(7): 803-813, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27323329

RESUMEN

Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Consumo de Oxígeno/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula , Femenino , Genes erbB-2/genética , Humanos , Ratones , Mitocondrias/metabolismo
18.
Int J Biochem Cell Biol ; 41(7): 1563-71, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19401150

RESUMEN

FIH-1, factor inhibiting hypoxia-inducible factor-1 (HIF-1), regulates oxygen sensing by hydroxylating an asparagine within HIF-alpha. It also hydroxylates asparagines in many proteins containing ankyrin repeats, including Notch1-3, p105 and I?B?. Relative binding affinity and hydroxylation rate are crucial determinants of substrate selection and modification. We determined the contributions of substrate sequence composition and length and of oxygen concentration to the FIH-1-binding and/or hydroxylation of Notch1-4 and compared them with those for HIF-1alpha. We also demonstrated hydroxylation of two asparagines in Notch2 and 3, corresponding to Sites 1 and 2 of Notch1, by mass spectrometry for the first time. Our data demonstrate that substrate length has a much greater influence on FIH-1-dependent hydroxylation of Notch than of HIF-1alpha, predominantly through binding affinity rather than maximal reaction velocity. The K(m) value of FIH-1 for Notch1, < 0.2 microM, is at least 250-fold lower than that of 50 microM for HIF-1alpha. Site 1 of Notch1-3 appeared the preferred site of FIH-1 hydroxylation in these substrates. Interestingly, binding of Notch4 to FIH-1 was observed with an affinity almost 10-fold lower than for Notch1-3, but no hydroxylation was detected. Importantly, we demonstrate that the K(m) of FIH-1 for oxygen at the preferred Site 1 of Notch1-3, 10-19 microM, is an order of magnitude lower than that for Site 2 or HIF-1alpha. Hence, at least during in vitro hydroxylation, Notch is likely to become efficiently hydroxylated by FIH-1 even under relatively severe hypoxic conditions, where HIF-1alpha hydroxylation would be reduced.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Asparagina/metabolismo , Humanos , Hidroxilación , Cinética , Ratones , Oxigenasas de Función Mixta , Datos de Secuencia Molecular , Oxígeno/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Receptores Notch/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA