Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Exp Parasitol ; 185: 71-78, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29355496

RESUMEN

Glycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen. TbADS complemented a null mutant of Leishmania major lacking alkyl-dihydroxyacetonephosphate synthase activity and restored the formation of normal form of the ether lipid based virulence factor lipophosphoglycan. Despite lacking alkyl-dihydroxyacetonephosphate synthase activity, a null mutant of TbADS in procyclic trypanosomes remained viable and exhibited normal growth. Comprehensive analysis of cellular glycerophospholipids showed that TbADS was involved in the biosynthesis of all ether glycerophospholipid species, primarily found in the PE and PC classes.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Glicerofosfolípidos/biosíntesis , Leishmania major/enzimología , Microcuerpos/enzimología , Trypanosoma brucei brucei/enzimología , Leishmania major/genética , Leishmania major/metabolismo , Mutación con Pérdida de Función , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Espectrometría de Masas en Tándem , Trypanosoma brucei brucei/metabolismo
2.
PLoS One ; 12(7): e0181432, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28715456

RESUMEN

Glycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s). This work presents the characterization of the alternative, dihydroxyacetonephosphate acyltransferase TbDAT, which acylates primarily dihydroxyacetonephosphate and prefers palmitoyl-CoA as an acyl-CoA donor. TbDAT restores the viability of a yeast double null mutant that lacks glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferase activities. A conditional null mutant of TbDAT in T. brucei procyclic form was created and characterized. TbDAT was important for survival during stationary phase and synthesis of ether lipids. In contrast, TbDAT was dispensable for normal growth. Our results show that in T. brucei procyclic forms i) TbDAT but not TbGAT is the physiologically relevant initial acyltransferase and ii) ether lipid precursors are primarily made by TbDAT.


Asunto(s)
Aciltransferasas/metabolismo , Éteres Fosfolípidos/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/crecimiento & desarrollo , Aciltransferasas/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Microcuerpos/metabolismo , Mutación , Espectrometría de Masa por Ionización de Electrospray
3.
J Colloid Interface Sci ; 481: 20-7, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27450888

RESUMEN

HYPOTHESIS: Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. EXPERIMENTS: For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. FINDINGS: Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA