RESUMEN
In this Letter, we demonstrate turbulence mitigation of four mode-division-multiplexing (MDM) quadrature-phase-shift-keying (QPSK) channels in a pilot-assisted self-coherent free-space optical (FSO) link using a photodetector (PD) array and digital signal processing (DSP)-based channel demultiplexing. A Gaussian pilot beam is co-transmitted with four 1-Gbaud QPSK channels carried by four orbital angular momentum (OAM) modes. The pilot beam experiences similar turbulence-induced wavefront distortion to the data beams. At the receiver, the turbulence distortion is mitigated by its conjugate during the pilot-data mixing in a PD array. Subsequently, we demultiplex the four channels by applying in DSP a fixed matrix on the signals. Results show that our approach has <3-dB turbulence-induced power penalty at a 7% forward error correction (FEC) limit under a turbulence strength of 2w0/r0 = â¼4.4. The same turbulence can cause >18-dB penalties for a local oscillator (LO)-based coherent MDM system.
RESUMEN
Compared to its electronic counterpart, optically performed matrix convolution can accommodate phase-encoded data at high rates while avoiding optical-to-electronic-to-optical (OEO) conversions. We experimentally demonstrate a reconfigurable matrix convolution of quadrature phase-shift keying (QPSK)-encoded input data. The two-dimensional (2-D) input data is serialized, and its time-shifted replicas are generated. This 2-D data is convolved with a 1-D kernel with coefficients, which are applied by adjusting the relative phase and amplitude of the kernel pumps. Time-shifted data replicas (TSDRs) and kernel pumps are coherently mixed using nonlinear wave mixing in a periodically poled lithium niobate (PPLN) waveguide. To show the tunability and reconfigurability of this approach, we vary the kernel coefficients, kernel sizes (e.g., 2 × 1 or 3 × 1), and input data rates (e.g., 6-20â Gbit/s). The convolution results are verified to be error-free under an applied: (a) 2 × 1 kernel, resulting in a 16-quadrature amplitude modulation (QAM) output with an error vector magnitude (EVM) of â¼5.1-8.5%; and (b) 3 × 1 kernel, resulting in a 64-QAM output with an EVM of â¼4.9-5.5%.
RESUMEN
Performing pattern recognition via correlation in the optical domain has potential advantages, including: (i) high-speed operation at the line rate and (ii) tunability and scalability by operating on the optical wave properties. Such pattern recognition might be performed on quadrature-phase-shift-keying (QPSK) data transmitted over an optical network, which generally requires using coherent detection to distinguish the phase levels of the correlator output. To enable simpler detection, we combine optical correlation with optical biasing to experimentally demonstrate tunable and scalable QPSK pattern recognition using direct detection. The pattern is applied by adjusting the relative phases of the local pumps. Delayed QPSK signals, a coherent bias tone, and local pumps undergo nonlinear wave-mixing in a periodically poled lithium niobate (PPLN) waveguide to perform optical correlation and biasing. The biased correlator output is captured using direct detection, where the highest power level corresponds only to the pattern. Multiple QPSK pattern recognitions are achieved error-free over 3072 symbols using power thresholding values of (i) 0.78 at a 5-Gbaud rate and 0.73 at a 10-Gbaud rate for 2-symbol pattern recognition and (ii) 0.81 at a 5-Gbaud rate and 0.79 at a 10-Gbaud rate for 3-symbol pattern recognition.
RESUMEN
This publisher's note contains a correction to Opt. Lett.48, 6452 (2023)10.1364/OL.506270.
RESUMEN
In this paper, we experimentally demonstrate an 8-Gbit/s quadrature-phase-shift-keying (QPSK) coherent underwater wireless optical communication (UWOC) link under scattering conditions at 532â nm. At the transmitter, we generate the 532-nm QPSK signal using second-harmonic generation (SHG), where the 1064-nm signal modulated with four phase levels of an 8-phase-shift-keying (8-PSK) format is phase doubled to produce the 532-nm QPSK signal. To enhance the receiver sensitivity, we utilize a local oscillator (LO) at the receiver from an independent laser source. The received QPSK data beam is mixed with the independent LO for coherent heterodyne detection. Results show that the bit error rates (BERs) of the received QPSK signal can reach below the 7% forward error correction (FEC) limit under turbid water with attenuation lengths (γL) up to 7.4 and 6.1 for 2- and 8-Gbit/s QPSK, respectively. The corresponding receiver sensitivities are -34.0 and -28.4â dBm for 2- and 8-Gbit/s QPSK, respectively.
RESUMEN
We experimentally demonstrate an optics-based half-adder of two 4-phase-shift-keying (4-PSK) data channels using nonlinear wave mixing. The optics-based half-adder has two 4-ary phase-encoded inputs (i.e., SA and SB) and two phase-encoded outputs (i.e., Sum and Carry). The input quaternary base numbers {0,1,2,3} are represented by 4-PSK signals A and B with four phase levels. Along with the original signals A and B, the phase-conjugate signal copies A* and B*and phase-doubled signal copies A2 and B2 are also generated to form two signal groups SA(A, A*, A2) and SB(B, B*, B2). All of the above signals in the same signal group are (a) prepared in the electrical domain with a frequency spacing of Δf and (b) generated optically in the same IQ modulator. When combined with a pump laser, group SA mixes with group SB in a periodically poled lithium niobate nonlinear (PPLN) device. At the output of the PPLN device, both the Sum (A2B2) and the Carry (AB + A*B*) are simultaneously generated with four phase levels and two phase levels, respectively. In our experiment, the symbol rates can be varied between 5 Gbaud and 10 Gbaud. The experimental results show that (i) the measured conversion efficiency of two 5-Gbaud outputs is approximately -24â dB for Sum and approximately -20â dB for Carry, and (ii) the measured optical signal-to-noise ratio (OSNR) penalty of the 10-Gbaud Sum and Carry channels is <10â dB and <5â dB, compared with that of the 5-Gbaud channels at the BER of 3.8 × 10-3.
Asunto(s)
Electricidad , Óxidos , Relación Señal-RuidoRESUMEN
There are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.g., <1 Mbit/s). Here, we demonstrate automatic turbulence mitigation in a 2-Gbit/s quadrature-phase-shift-keying (QPSK) coherent FSO link using degenerate four-wave-mixing (DFWM)-based phase conjugation and fiber-coupled data modulation. Specifically, we counter-propagate a Gaussian probe from the receiver (Rx) to the transmitter (Tx) through turbulence. At the Tx, we generate a Gaussian beam carrying QPSK data by a fiber-coupled phase modulator. Subsequently, we create a phase conjugate data beam through a photorefractive crystal-based DFWM involving the Gaussian data beam, the turbulence-distorted probe, and a spatially filtered Gaussian copy of the probe beam. Finally, the phase conjugate beam is transmitted back to the Rx for turbulence mitigation. Compared to a coherent FSO link without mitigation, our approach shows up to â¼14-dB higher LO-data mixing efficiency and achieves error vector magnitude (EVM) performance of <16% under various turbulence realizations.
RESUMEN
Previously, space-time wave packets (STWPs) have been generated in free space with reduced diffraction and a tunable group velocity by combining multiple frequency comb lines each carrying a single Bessel mode with a unique wave number. It might be potentially desirable to propagate the STWP through fiber for reconfigurable positioning. However, fiber mode coupling might degrade the output STWP and distort its propagation characteristics. In this Letter, we experimentally demonstrate STWP generation and propagation over 1-m graded-index multi-mode fiber. Fiber mode coupling is mitigated by pre-distortion according to the inverse matrix of the fiber mode coupling matrix. Measurement of the STWP at the fiber output shows that its group velocity can vary from 1.0042c to 0.9967c by tuning the wave number of the Bessel mode on each frequency. The measured time-averaged intensity profiles show that the beam radius remains similar after 150-mm free-space propagation after exiting the fiber.
RESUMEN
Networks can play a key role in high-speed and reconfigurable arithmetic computing. However, two performance bottlenecks may arise when: (i) relying solely on electronics to handle computation for multiple data channels at high data rates, and (ii) the data streams input to a processing node (PN) are transmitted as phase-encoded signals over an optical network. We experimentally demonstrate the operation of optically-assisted reconfigurable average of two 4-phase-encoded data channels at 10- and 20-Gbaud rates. Our input signals are two streams of 2-bit numbers representing a binary floating-point format, and the operation results in 7-phase-encoded output signals represented by 3-bit numbers. The average operation is achieved in three stages: (1) phase encoding and division-using an optical modulator to encode the data streams; (2) summation-using a highly nonlinear fiber (HNLF); and (3) multicast-using a periodically poled lithium niobate (PPLN) waveguide to multicast back the result into the original signal wavelengths. The experimental results validate the concept, and the measured penalties indicate that: (i) the error vector magnitudes (EVMs) of optical signals increase at each stage and reach â¼18-21% for the final multicast results, and (ii) compared to the inputs, the optical signal-to-noise ratio (OSNR) penalty of output is â¼6.7â dB for the 10-Gbaud rate and â¼6.9â dB for the 20-Gbaud rate at a bit error rate (BER) of 3.8e-3.
RESUMEN
In general, atmospheric turbulence can degrade the performance of free-space optical (FSO) communication systems by coupling light from one spatial mode to other modes. In this Letter, we experimentally demonstrate a 400â Gbit/s quadrature-phase-shift-keyed (QPSK) FSO mode-division-multiplexing (MDM) coherent communication link through emulated turbulence using four Laguerre Gaussian (LG) modes with different radial and azimuthal indices (L G 10, L G 11, L G -10, and L G -11). To mitigate turbulence-induced channel cross talk and power loss, we implement an adaptive optics (AO) system at the receiver end. A Gaussian beam at a slightly different wavelength is co-propagated with the data beams as the probe beam. We use a wavefront sensor (WFS) to measure the wavefront distortion of this probe beam, and this information is used to tune a spatial light modulator (SLM) to adaptively correct the four distorted data-beam wavefronts. Using this adaptive-optics approach, the power loss and cross talk are reduced by â¼10 and â¼18â dB, respectively.
RESUMEN
Space-time (ST) wave packets, in which spatial and temporal characteristics are coupled, have gained attention due to their unique propagation characteristics, such as propagation invariance and tunable group velocity in addition to their potential ability to carry orbital angular momentum (OAM). Through experiment and simulation, we explore the generation of OAM-carrying ST wave packets, with the unique property of a time-dependent beam radius at various ranges of propagation distances. To achieve this, we synthesize multiple frequency comb lines, each assigned to a coherent combination of multiple Laguerre-Gaussian (LGâ,p) modes with the same azimuthal index but different radial indices. The time-dependent interference among the spatial modes at the different frequencies leads to the generation of the desired OAM-carrying ST wave packet with dynamically varying radii. The simulation results indicate that the dynamic range of beam radius oscillations increases with the number of modes and frequency lines. The simulated ST wave packet for OAM of orders +1 or +3 has an OAM purity of >95%. In addition, we experimentally generate and measure the OAM-carrying ST wave packets with time-dependent beam radii. In the experiment, several lines of a Kerr frequency comb are spatially modulated with the superposition of multiple LG modes and combined to generate such an ST wave packet. In the experiment, ST wave packets for OAM of orders +1 or +3 have an OAM purity of >64%. In simulation and experiment, OAM purity decreases and beam radius becomes larger over the propagation.
RESUMEN
Novel forms of light beams carrying orbital angular momentum (OAM) have recently gained interest, especially due to some of their intriguing propagation features. Here, we experimentally demonstrate the generation of near-diffraction-free two-dimensional (2D) space-time (ST) OAM wave packets (â = +1, +2, or +3) with variable group velocities in free space by coherently combining multiple frequency comb lines, each carrying a unique Bessel mode. Introducing a controllable specific correlation between temporal frequencies and spatial frequencies of these Bessel modes, we experimentally generate and detect near-diffraction-free OAM wave packets with high mode purities (>86%). Moreover, the group velocity can be controlled from 0.9933c to 1.0069c (c is the speed of light in vacuum). These ST OAM wave packets might find applications in imaging, nonlinear optics, and optical communications. In addition, our approach might also provide some insights for generating other interesting ST beams.
RESUMEN
Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing). Such structured EM waves include beams carrying orbital angular momentum (OAM). An area of increased recent interest is the use of terahertz (THz) beams for free-space communications, which tends to have: (a) larger bandwidth and lower beam divergence than millimeter-waves, and (b) lower interaction with matter conditions than optical waves. Here, we explore the multiplexing of THz OAM beams for high-capacity communications. Specifically, we experimentally demonstrate communication systems with two multiplexed THz OAM beams at a carrier frequency of 0.3 THz. We achieve a 60-Gbit/s quadrature-phase-shift-keying (QPSK) and a 24-Gbit/s 16 quadrature amplitude modulation (16-QAM) data transmission with bit-error rates below 3.8 × 10-3. In addition, to show the compatibility of different multiplexing approaches (e.g., polarization-, frequency-, and mode-division multiplexing), we demonstrate an 80-Gbit/s QPSK THz communication link by multiplexing 8 data channels at 2 polarizations, 2 frequencies, and 2 OAM modes.
RESUMEN
We experimentally demonstrate a 4-Gbit/s 16-QAM pilot-assisted, self-coherent, and turbulence-resilient free-space optical link using a photodetector (PD) array. The turbulence resilience is enabled by the efficient optoelectronic mixing of the data and pilot beams in a free-space-coupled receiver, which can automatically compensate for turbulence-induced modal coupling to recover the data's amplitude and phase. For this approach, a sufficient PD area might be needed to collect the beams while the bandwidth of a single larger PD could be limited. In this work, we use an array of smaller PDs instead of a single larger PD to overcome the beam collection and bandwidth response trade-off. In the PD-array-based receiver, the data and pilot beams are efficiently mixed in the aggregated PD area formed by four PDs, and the four mixing outputs are electrically combined for data recovery. The results show that: (i) either with or without turbulence effects (D/r0 = â¼8.4), the 1-Gbaud 16-QAM signal recovered by the PD array has a lower error vector magnitude than that of a single larger PD; (ii) for 100 turbulence realizations, the pilot-assisted PD-array receiver recovers 1-Gbaud 16-QAM data with a bit-error rate below 7% of the forward error correction limit; and (iii) for 1000 turbulence realizations, the average electrical mixing power loss of a single smaller PD, a single larger PD, and a PD array is â¼5.5â dB, â¼1.2â dB, and â¼1.6â dB, respectively.
RESUMEN
Space-time (ST) wave packets have gained much interest due to their dynamic optical properties. Such wave packets can be generated by synthesizing frequency comb lines, each having multiple complex-weighted spatial modes, to carry dynamically changing orbital angular momentum (OAM) values. Here, we investigate the tunability of such ST wave packets by varying the number of frequency comb lines and the combinations of spatial modes on each frequency. We experimentally generate and measure the wave packets with tunable OAM values from +1 to +6 or from +1 to +4 during a â¼5.2-ps period. We also investigate, in simulation, the temporal pulse width of the ST wave packet and the nonlinear variation of the OAM values. The simulation results show that: (i) a pulse width can be narrower for the ST wave packet carrying dynamically changing OAM values using more frequency lines; and (ii) the nonlinearly varying OAM value can result in different frequency chirps along the azimuthal direction at different time instants.
RESUMEN
We experimentally demonstrate turbulence mitigation in a 200-Gbit/s quadrature phase-shift keying (QPSK) orbital-angular-momentum (OAM) mode-multiplexed system using simple power measurements for determining the modal coupling matrix. To probe and mitigate turbulence, we perform the following: (i) sequentially transmit multiple probe beams at 1550-nm wavelength each with a different combination of Laguerre-Gaussian (LG) modes; (ii) detect the power coupling of each probe beam to LG0,0 for determining the complex modal coupling matrix; (iii) calculate the conjugate phase of turbulence-induced spatial phase distortion; (iv) apply this conjugate phase to a spatial light modulator (SLM) at the receiver to mitigate the turbulence distortion for the 1552-nm mode-multiplexed data-carrying beams. The probe wavelength is close enough to the data wavelength such that it experiences similar turbulence, but is far enough away such that the probe beams do not affect the data beams and can all operate simultaneously. Our experimental results show that with our turbulence mitigation approach the following occur: (a) the inter-channel crosstalk is reduced by â¼25 and â¼21â dB for OAM +1 and -2 channels, respectively; (b) the optical signal-to-noise ratio (OSNR) penalty is <1â dB for both OAM channels for a bit error rate (BER) at the 7% forward error correction (FEC) limit, compared with the no turbulence case.
RESUMEN
A time-dependent change in the refractive index of a material leads to a change in the frequency of an optical beam passing through that medium. Here, we experimentally demonstrate that this effect-known as adiabatic frequency conversion (AFC)-can be significantly enhanced by a nonlinear epsilon-near-zero-based (ENZ-based) plasmonic metasurface. Specifically, by using a 63-nm-thick metasurface, we demonstrate a large, tunable, and broadband frequency shift of up to â¼11.2 THz with a pump intensity of 4 GW/cm2. Our results represent a decrease of â¼10 times in device thickness and 120 times in pump peak intensity compared with the cases of bare, thicker ENZ materials for the similar amount of frequency shift. Our findings might potentially provide insights for designing efficient time-varying metasurfaces for the manipulation of ultrafast pulses.
RESUMEN
We experimentally demonstrate a tunable optical second-order Volterra filter using wave mixing and delays. Wave mixing is performed in a periodically poled lithium niobate waveguide with the cascaded sum-frequency generation and difference-frequency generation processes. Compared to conventional optical tapped delay line structures, second-order taps are added through the wave mixing of two signal copies. We measure the frequency response of the filter by sending a frequency-swept sinusoidal wave as the input. The tap weights are tuned with a liquid-crystal-on-silicon waveshaper for different filter configurations. With the additional second-order taps, the filter is able to perform a nonlinear function. As an example, we demonstrate the compensation of a nonlinearly distorted 10-20 Gbaud 4-amplitude and phase shift keying signal.
RESUMEN
We experimentally demonstrate remotely powered, controlled, and monitored optical switching. The control signal of the switch is modulated on an optical wave and sent from a transmitter. At the switch location, the control signal is converted from an optical to an electrical signal to drive the switch. In addition, to provide electrical power at the switch location, optical power is sent from a distance and converted to electrical power using a series of photodiodes. We experimentally demonstrate (a) 1 Gb/s on-off keying data channel transmission and switching with a 1 MHz optically delivered control signal, and (b) 40 Gb/s quadrature phase-shift keying data channel transmission and remotely monitoring switch state and bias drift. The switching function is demonstrated without using any local electrical power supply. Moreover, the monitoring tones are transmitted to the remote switch and fed back to the transmitter to realize a switch state and detect the bias drift.
RESUMEN
Optical pulses carrying orbital angular momentum (OAM) have recently gained interest. In general, it might be beneficial to simultaneously achieve: (i) minimum diffraction, (ii) minimum dispersion, and (iii) controllable group velocity. Here, we explore via simulation the generation of near-diffraction-free and near-dispersion-free OAM pulses with arbitrary group velocities by coherently combining multiple frequencies. Each frequency carries a specific Bessel mode with the same topological charge (â) but different kr (spatial frequency) values based on space-time correlations. Moreover, we also find that (i) both positive and negative group velocities could be achieved and continuously controlled from the subluminal to superluminal values and (ii) when the â is varied from 0 to 10, the simulated value of the group velocity remains the same. However, as the â value increases, the pulse duration becomes longer for a given number of frequency lines.